IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3880-d276156.html
   My bibliography  Save this article

Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste

Author

Listed:
  • Sylwia Myszograj

    (Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Environmental Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland)

Abstract

One of the environmental solutions employed in order to achieve circular economy goals is methane fermentation—a technology that is beneficial both for the stabilization and reduction of organic waste and for alternative energy generation. The article presents the results of research aimed at determining the biogas and methane potential of bio-waste which has been pre-thermally disintegrated, and determining the influence of variable process parameters of disintegration on the kinetics of fermentation. A first-order kinetic model was used to describe the fermentation as well as two mathematical models: logistic and Gompertz. It has been found that process parameters such as time (0.5, 1 and 2 h) and temperature (between 55 to 175 °C) have a significant effect on the solubilization efficiency of the bio-waste. The methane fermentation of thermally disintegrated bio-waste showed that the highest biogas potential is characterized by samples treated, respectively, for 0.5 h at 155 °C and for 2 h at 175 °C. The best match for the experimental data of biogas production from disintegrated substrates was demonstrated for the Gompertz model.

Suggested Citation

  • Sylwia Myszograj, 2019. "Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste," Energies, MDPI, vol. 12(20), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3880-:d:276156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weronika Cieciura-Włoch & Michał Binczarski & Jolanta Tomaszewska & Sebastian Borowski & Jarosław Domański & Piotr Dziugan & Izabela Witońska, 2019. "The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen," Energies, MDPI, vol. 12(17), pages 1-17, August.
    2. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    3. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylwia Myszograj & Ewelina Płuciennik-Koropczuk, 2023. "Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential," Energies, MDPI, vol. 16(1), pages 1-14, January.
    2. Sylwia Myszograj & Dariusz Bocheński & Mirosław Mąkowski & Ewelina Płuciennik-Koropczuk, 2021. "Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study," Energies, MDPI, vol. 14(21), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    2. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    3. Yang, Shunchang & Liu, Yikan & Wu, Na & Zhang, Yingxiu & Svoronos, Spyros & Pullammanappallil, Pratap, 2019. "Low-cost, Arduino-based, portable device for measurement of methane composition in biogas," Renewable Energy, Elsevier, vol. 138(C), pages 224-229.
    4. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    7. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    8. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    9. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    12. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    13. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    14. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    15. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    16. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    17. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    18. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    19. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    20. Paulina-Soledad Vidal-Espinosa & Manuel Alvarez-Vera & Andrés Cárdenas & Juan-Carlos Cobos-Torres, 2023. "Beneficial Microorganisms in the Anaerobic Digestion of Cattle and Swine Excreta," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    More about this item

    Keywords

    biogas; biowaste; kinetics;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3880-:d:276156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.