IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3862-d275729.html
   My bibliography  Save this article

Smart Battery Pack for Electric Vehicles Based on Active Balancing with Wireless Communication Feedback

Author

Listed:
  • Mattia Ricco

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Jinhao Meng

    (School of Automation, Northwestern Polytechnical University, Xi’an 710072, China)

  • Tudor Gherman

    (Applied Electronics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania)

  • Gabriele Grandi

    (Department of Electric, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy)

  • Remus Teodorescu

    (Energy Technology Department, Aalborg University, 9220 Aalborg, Denmark)

Abstract

In this paper, the concept of smart battery pack is introduced. The smart battery pack is based on wireless feedback from individual battery cells and is capable to be applied to electric vehicle applications. The proposed solution increases the usable capacity and prolongs the life cycle of the batteries by directly integrating the battery management system in the battery pack. The battery cells are connected through half-bridge chopper circuits, which allow either the insertion or the bypass of a single cell depending on the current states of charge. This consequently leads to the balancing of the whole pack during both the typical charging and discharging time of an electric vehicle and enables the fault-tolerant operation of the pack. A wireless feedback for implementing the balancing method is proposed. This solution reduces the need for cabling and simplifies the assembling of the battery pack, making also possible a direct off-board diagnosis. The paper validates the proposed smart battery pack and the wireless feedback through simulations and experimental results by adopting a battery cell emulator.

Suggested Citation

  • Mattia Ricco & Jinhao Meng & Tudor Gherman & Gabriele Grandi & Remus Teodorescu, 2019. "Smart Battery Pack for Electric Vehicles Based on Active Balancing with Wireless Communication Feedback," Energies, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3862-:d:275729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sang-Won Lee & Yoon-Geol Choi & Bongkoo Kang, 2019. "Active Charge Equalizer of Li-Ion Battery Cells Using Double Energy Carriers," Energies, MDPI, vol. 12(12), pages 1-13, June.
    2. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    3. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Monteiro & Joao L. Afonso, 2022. "Power Electronics Technologies and Applicationsfor EV Battery Charging Systems," Energies, MDPI, vol. 15(3), pages 1-4, January.
    2. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Chen, Qihuai & Li, Zhongshen, 2020. "Development and key technologies of pure electric construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    4. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    6. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    7. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    8. Dugoua, Eugenie & Dumas, Marion, 2024. "Coordination dynamics between fuel cell and battery technologies in the transition to clean cars," LSE Research Online Documents on Economics 124029, London School of Economics and Political Science, LSE Library.
    9. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    11. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    12. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    13. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    14. Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    15. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    16. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    17. Weina Qu & Hongli Sun & Yan Ge, 2021. "The effects of trait anxiety and the big five personality traits on self-driving car acceptance," Transportation, Springer, vol. 48(5), pages 2663-2679, October.
    18. Shang, Tongle & Zhan, Hao & Gong, Qinfei & Zeng, Tao & Li, Pengcheng & Zeng, Zhiyong, 2024. "Insights into the thermal and electric field distribution and the structural optimization in the graphitization furnace," Energy, Elsevier, vol. 297(C).
    19. Santos, María Emma, 2019. "Non-monetary indicators to monitor SDG targets 1.2 and 1.4: standards, availability, comparability and quality," Estudios Estadísticos 44452, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    20. Sebastian Wolff & Svenja Kalt & Manuel Bstieler & Markus Lienkamp, 2021. "Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study," Energies, MDPI, vol. 14(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3862-:d:275729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.