IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3640-d270180.html
   My bibliography  Save this article

The Vulnerability of the Power Sector to Climate Variability and Change: Evidence from Indonesia

Author

Listed:
  • Kamia Handayani

    (Department of Governance and Technology for Sustainability, University of Twente, 7500 AE Enschede, The Netherlands
    PT PLN (Persero), Jakarta Selatan 12160, Indonesia)

  • Tatiana Filatova

    (Department of Governance and Technology for Sustainability, University of Twente, 7500 AE Enschede, The Netherlands
    School of Information, Systems and Modeling, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Yoram Krozer

    (Department of Governance and Technology for Sustainability, University of Twente, 7500 AE Enschede, The Netherlands)

Abstract

The power sector is a key target for reducing CO 2 emissions. However, little attention has been paid to the sector’s vulnerability to climate change. This paper investigates the impacts of severe weather events and changes in climate variables on the power sector in developing countries, focusing on Indonesia as a country with growing electricity infrastructure, yet being vulnerable to natural hazards. We obtain empirical evidence concerning weather and climate impacts through interviews and focus group discussions with electric utilities along the electricity supply chain. These data are supplemented with reviews of utilities’ reports and published energy sector information. Our results indicate that severe weather events often cause disruptions in electricity supply—in the worst cases, even power outages. Weather-related power outages mainly occur due to failures in distribution networks. While severe weather events infrequently cause shutdowns of power plants, their impact magnitude is significant if it does occur. Meanwhile, transmission networks are susceptible to lightning strikes, which are the leading cause of the networks’ weather-related failures. We also present estimates of financial losses suffered by utilities due to weather-related power disruptions and highlights their adaptation responses to those disruptions.

Suggested Citation

  • Kamia Handayani & Tatiana Filatova & Yoram Krozer, 2019. "The Vulnerability of the Power Sector to Climate Variability and Change: Evidence from Indonesia," Energies, MDPI, vol. 12(19), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3640-:d:270180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    2. Pašičko, Robert & Branković, Čedo & Šimić, Zdenko, 2012. "Assessment of climate change impacts on energy generation from renewable sources in Croatia," Renewable Energy, Elsevier, vol. 46(C), pages 224-231.
    3. Véliz, Karina D. & Kaufmann, Robert K. & Cleveland, Cutler J. & Stoner, Anne M.K., 2017. "The effect of climate change on electricity expenditures in Massachusetts," Energy Policy, Elsevier, vol. 106(C), pages 1-11.
    4. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    5. Kaufmann, Robert K. & Gopal, Sucharita & Tang, Xiaojing & Raciti, Steve M. & Lyons, Paul E. & Geron, Nick & Craig, Francis, 2013. "Revisiting the weather effect on energy consumption: Implications for the impact of climate change," Energy Policy, Elsevier, vol. 62(C), pages 1377-1384.
    6. Jeannette Sieber, 2013. "Impacts of, and adaptation options to, extreme weather events and climate change concerning thermal power plants," Climatic Change, Springer, vol. 121(1), pages 55-66, November.
    7. Seljom, Pernille & Rosenberg, Eva & Fidje, Audun & Haugen, Jan Erik & Meir, Michaela & Rekstad, John & Jarlset, Thore, 2011. "Modelling the effects of climate change on the energy system—A case study of Norway," Energy Policy, Elsevier, vol. 39(11), pages 7310-7321.
    8. Pereira de Lucena, André Frossard & Szklo, Alexandre Salem & Schaeffer, Roberto & Dutra, Ricardo Marques, 2010. "The vulnerability of wind power to climate change in Brazil," Renewable Energy, Elsevier, vol. 35(5), pages 904-912.
    9. David Ward, 2013. "The effect of weather on grid systems and the reliability of electricity supply," Climatic Change, Springer, vol. 121(1), pages 103-113, November.
    10. de Lucena, André Frossard Pereira & Szklo, Alexandre Salem & Schaeffer, Roberto & de Souza, Raquel Rodrigues & Borba, Bruno Soares Moreira Cesar & da Costa, Isabella Vaz Leal & Júnior, Amaro Olimpio P, 2009. "The vulnerability of renewable energy to climate change in Brazil," Energy Policy, Elsevier, vol. 37(3), pages 879-889, March.
    11. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    12. Edward Vine, 2012. "Adaptation of California’s electricity sector to climate change," Climatic Change, Springer, vol. 111(1), pages 75-99, March.
    13. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teuku Riefky & Faizal Rahmanto Moeis & Yusuf Sofiyandi & Muhammad Adriansyah & Anas Izzuddin & Aqilah Farhani & Sendy Jasmine, 2021. "Resilient Infrastructure in Indonesia: A Way Forward," LPEM FEBUI Working Papers 202164, LPEM, Faculty of Economics and Business, University of Indonesia, revised 2021.
    2. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Zdenek Dvorak & Nikola Chovancikova & Jozef Bruk & Martin Hromada, 2021. "Methodological Framework for Resilience Assessment of Electricity Infrastructure in Conditions of Slovak Republic," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    4. Satria Putra Kanugrahan & Dzikri Firmansyah Hakam & Herry Nugraha, 2022. "Techno-Economic Analysis of Indonesia Power Generation Expansion to Achieve Economic Sustainability and Net Zero Carbon 2050," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    5. Handayani, Kamia & Filatova, Tatiana & Krozer, Yoram & Anugrah, Pinto, 2020. "Seeking for a climate change mitigation and adaptation nexus: Analysis of a long-term power system expansion," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Handayani, Kamia & Filatova, Tatiana & Krozer, Yoram & Anugrah, Pinto, 2020. "Seeking for a climate change mitigation and adaptation nexus: Analysis of a long-term power system expansion," Applied Energy, Elsevier, vol. 262(C).
    2. Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
    3. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    4. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    5. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    6. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    7. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    8. de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
    9. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    10. Hilden, Mikael & Huuki, Hannu & Kivisaari, Visa & Kopsakangas-Savolainen, Maria, 2018. "The importance of transnational impacts of climate change in a power market," Energy Policy, Elsevier, vol. 115(C), pages 418-425.
    11. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    12. Shen, Pengyuan & Lior, Noam, 2016. "Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings," Energy, Elsevier, vol. 114(C), pages 1288-1305.
    13. Lan-Cui Liu & Gang Wu, 2015. "Assessment of energy supply vulnerability between China and USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 127-138, February.
    14. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    15. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    16. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    17. Fant, Charles & Boehlert, Brent & Strzepek, Kenneth & Larsen, Peter & White, Alisa & Gulati, Sahil & Li, Yue & Martinich, Jeremy, 2020. "Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure," Energy, Elsevier, vol. 195(C).
    18. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    19. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    20. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3640-:d:270180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.