IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3544-d267675.html
   My bibliography  Save this article

Study on the Limit Penetration Level Evaluation Method of Distributed Photovoltaics Based on Large Sample Generation-Load Data

Author

Listed:
  • Jinlin Li

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Tianjun Jing

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Jiangbo Wang

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Kun Wang

    (Economic Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310008, China)

  • Lei Wang

    (Economic Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310008, China)

Abstract

The three-step rule of distributed photovoltaic (DPVs) connecting to a distribution network in the planning of practical photovoltaic projects is modeled in this paper. On this basis, a method based on large sample historical generation-load data is proposed to comprehensively evaluate the DPV limit penetration level of the low voltage–medium voltage (LV-MV) distribution network, which is the premise of DPV connection planning. Considering the fluctuations of generation-load data in time and space, the DPV limit penetration level of the LV network is evaluated based on kernel density estimation. On this basis, considering the uncertainties of DPVs connecting node schemes and connection capacity, the limit penetration level of DPVs continuously connecting to the MV network is evaluated based on the dichotomy method and stochastic simulation. Finally, the feasibility of evaluating the DPV limit penetration level by the proposed method is verified based on an example of a real distribution network, which is of great importance for the planning of a distribution network with high DPV permeability to continuously connect to DPVs.

Suggested Citation

  • Jinlin Li & Tianjun Jing & Jiangbo Wang & Kun Wang & Lei Wang, 2019. "Study on the Limit Penetration Level Evaluation Method of Distributed Photovoltaics Based on Large Sample Generation-Load Data," Energies, MDPI, vol. 12(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3544-:d:267675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haque, M. Mejbaul & Wolfs, Peter, 2016. "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1195-1208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    2. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    3. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    4. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    5. Elutunji Buraimoh & Innocent E. Davidson & Fernando Martinez-Rodrigo, 2019. "Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control," Energies, MDPI, vol. 12(20), pages 1-26, October.
    6. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    7. Jiaqi Gu & Fei Mei & Jixiang Lu & Jinjun Lu & Jingcheng Chen & Xinmin Zhang & Limin Li, 2020. "Three-Stage Analysis of the Maximum Accommodation Capacity of a Distribution System with High Photovoltaic Penetration," Energies, MDPI, vol. 13(17), pages 1-18, August.
    8. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    9. Rong-Ceng Leou & Jen-Hao Teng & Yun-Fang Li & Wei-Min Lin & Yu-Hung Lin, 2020. "System Unbalance Analyses and Improvement for Rooftop Photovoltaic Generation Systems in Distribution Networks," Energies, MDPI, vol. 13(8), pages 1-18, April.
    10. Saif Ul Islam & Kamran Zeb & Soobae Kim, 2022. "Design of Robust Fuzzy Logic Controller Based on Gradient Descent Algorithm with Parallel-Resonance Type Fault Current Limiter for Grid-Tied PV System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    11. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    12. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    13. Kongrit Mansiri & Sukruedee Sukchai & Chatchai Sirisamphanwong, 2018. "Fuzzy Control for Smart PV-Battery System Management to Stabilize Grid Voltage of 22 kV Distribution System in Thailand," Energies, MDPI, vol. 11(7), pages 1-19, July.
    14. Sharma, Vanika & Aziz, Syed Mahfuzul & Haque, Mohammed H. & Kauschke, Travis, 2020. "Effects of high solar photovoltaic penetration on distribution feeders and the economic impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    16. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
    17. Daisuke Iioka & Takahiro Fujii & Toshio Tanaka & Tsuyoshi Harimoto & Junpei Motoyama & Daisuke Nagae, 2021. "Improvement of Voltage Unbalance by Current Injection Based on Unbalanced Line Impedance in Distribution Network with PV System," Energies, MDPI, vol. 14(23), pages 1-16, December.
    18. Xu, Jian & Wang, Jing & Liao, Siyang & Sun, Yuanzhang & Ke, Deping & Li, Xiong & Liu, Ji & Jiang, Yibo & Wei, Congying & Tang, Bowen, 2018. "Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios," Applied Energy, Elsevier, vol. 231(C), pages 985-996.
    19. Andrea Reimuth & Veronika Locherer & Martin Danner & Wolfram Mauser, 2020. "How Does the Rate of Photovoltaic Installations and Coupled Batteries Affect Regional Energy Balancing and Self-Consumption of Residential Buildings?," Energies, MDPI, vol. 13(11), pages 1-18, May.
    20. Lee, J. & Bérard, Jean-Philippe & Razeghi, G. & Samuelsen, S., 2020. "Maximizing PV hosting capacity of distribution feeder microgrid," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3544-:d:267675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.