IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3705-d579081.html
   My bibliography  Save this article

Research on Temperature Monitoring Method of Cable on 10 kV Railway Power Transmission Lines Based on Distributed Temperature Sensor

Author

Listed:
  • Kai Chen

    (China Railway Siyuan Survey and Design Group CO., LTD., Wuhan 430063, China)

  • Yi Yue

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yuejin Tang

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Railway power transmission lines (RPTL) are power lines that provide nontraction power supply for railways, such as communications and signals along the railway. With the advancement of technology, power cables are being used more and more widely. Operational experience has shown that during the operation of power cables, abnormal heat is often caused by fault factors such as poor joint crimping and severe partial discharge caused by insulation defects, leading to cable burns in extreme cases. Distributed temperature sensors (DTS), a kind of spatial continuous temperature sensor using sensing optical fiber, can measure the temperature along the cable and are expected to realize on-line monitoring and positioning of cable heating faults. This paper first builds a finite element model of the cable under various faults to calculate the distribution characteristics of the temperature field of the faulty cable. Then the results are verified through experiments with the external sensing fiber and the artificially manufactured heating points of the cable. The conclusions show that it is feasible to use a distributed sensing fiber to monitor and locate the heating fault of power cable.

Suggested Citation

  • Kai Chen & Yi Yue & Yuejin Tang, 2021. "Research on Temperature Monitoring Method of Cable on 10 kV Railway Power Transmission Lines Based on Distributed Temperature Sensor," Energies, MDPI, vol. 14(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3705-:d:579081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Ocłoń & Janusz Pobędza & Paweł Walczak & Piotr Cisek & Andrea Vallati, 2020. "Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems," Energies, MDPI, vol. 13(7), pages 1-10, April.
    2. Diana Enescu & Pietro Colella & Angela Russo, 2020. "Thermal Assessment of Power Cables and Impacts on Cable Current Rating: An Overview," Energies, MDPI, vol. 13(20), pages 1-36, October.
    3. Tommaso Bragatto & Alberto Cerretti & Luigi D’Orazio & Fabio Massimo Gatta & Alberto Geri & Marco Maccioni, 2019. "Thermal Effects of Ground Faults on MV Joints and Cables," Energies, MDPI, vol. 12(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiheng Liu & Yongqing Wang & Jiuxi Cheng & Peijie Han & Zhibin Liu & Zhaoyan Zhang & Xiaoguang Li & Jianquan Yao, 2023. "Dual Sagnac Interferometer Distributed Optical Fiber Localization Method Based on Hilbert–Huang Transform," Energies, MDPI, vol. 16(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdan Perka & Karol Piwowarski, 2021. "A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire," Energies, MDPI, vol. 14(21), pages 1-19, November.
    2. Diana Enescu & Pietro Colella & Angela Russo & Radu Florin Porumb & George Calin Seritan, 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables," Energies, MDPI, vol. 14(9), pages 1-23, May.
    3. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    4. Ocłoń, Paweł, 2021. "The effect of soil thermal conductivity and cable ampacity on the thermal performance and material costs of underground transmission line," Energy, Elsevier, vol. 231(C).
    5. Romuald Masnicki & Janusz Mindykowski & Beata Palczynska, 2022. "Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe," Energies, MDPI, vol. 15(13), pages 1-16, June.
    6. Stanislaw Czapp & Filip Ratkowski, 2021. "Optimization of Thermal Backfill Configurations for Desired High-Voltage Power Cables Ampacity," Energies, MDPI, vol. 14(5), pages 1-14, March.
    7. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Natalia Radwan-Pragłowska & Artur Cebula, 2020. "The Short-Circuit Protections in Hybrid Systems with Low-Power Synchronous Generators," Energies, MDPI, vol. 14(1), pages 1-12, December.
    8. Shahbaz Ahmad & Zarghaam Haider Rizvi & Joan Chetam Christine Arp & Frank Wuttke & Vineet Tirth & Saiful Islam, 2021. "Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating," Energies, MDPI, vol. 14(23), pages 1-19, December.
    9. Giovanna Adinolfi & Roberto Ciavarella & Giorgio Graditi & Antonio Ricca & Maria Valenti, 2021. "A Planning Tool for Reliability Assessment of Overhead Distribution Lines in Hybrid AC/DC Grids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    10. Artur Cywiński & Krzysztof Chwastek, 2021. "A Multiphysics Analysis of Coupled Electromagnetic-Thermal Phenomena in Cable Lines," Energies, MDPI, vol. 14(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3705-:d:579081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.