IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3419-d264355.html
   My bibliography  Save this article

On Optimal Battery Sizing for Households Participating in Demand-Side Management Schemes

Author

Listed:
  • Matthias Pilz

    (School of Computer Science & Mathematics at Kingston University London, Kingston upon Thames KT1 2EE, UK)

  • Omar Ellabban

    (Iberdrola Innovation Middle East, Qatar Science & Technology Park, Doha 210177, Qatar)

  • Luluwah Al-Fagih

    (School of Computer Science & Mathematics at Kingston University London, Kingston upon Thames KT1 2EE, UK
    Division of Engineering Management & Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar)

Abstract

The smart grid with its two-way communication and bi-directional power layers is a cornerstone in the combat against global warming. It allows for the large-scale adoption of distributed (individually-owned) renewable energy resources such as solar photovoltaic systems. Their intermittency poses a threat to the stability of the grid, which can be addressed by the introduction of energy storage systems. Determining the optimal capacity of a battery has been an active area of research in recent years. In this research, an in-depth analysis of the relation between optimal capacity and demand and generation patterns is performed for households taking part in a community-wide demand-side management scheme. The scheme is based on a non-cooperative dynamic game approach in which participants compete for the lowest electricity bill by scheduling their energy storage systems. The results are evaluated based on self-consumption, the peak-to-average ratio of the aggregated load and potential cost reductions. Furthermore, the difference between individually-owned batteries and a centralised community energy storage system serving the whole community is investigated.

Suggested Citation

  • Matthias Pilz & Omar Ellabban & Luluwah Al-Fagih, 2019. "On Optimal Battery Sizing for Households Participating in Demand-Side Management Schemes," Energies, MDPI, vol. 12(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3419-:d:264355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    2. Huang, Jing & Boland, John & Liu, Weidong & Xu, Chang & Zang, Haixiang, 2018. "A decision-making tool for determination of storage capacity in grid-connected PV systems," Renewable Energy, Elsevier, vol. 128(PA), pages 299-304.
    3. Khalilpour, Rajab & Vassallo, Anthony, 2016. "Planning and operation scheduling of PV-battery systems: A novel methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 194-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Kelm & Irena Wasiak & Rozmysław Mieński & Andrzej Wędzik & Michał Szypowski & Ryszard Pawełek & Krzysztof Szaniawski, 2022. "Hardware-in-the-Loop Validation of an Energy Management System for LV Distribution Networks with Renewable Energy Sources," Energies, MDPI, vol. 15(7), pages 1-18, April.
    2. Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
    3. Juha Koskela & Antti Mutanen & Pertti Järventausta, 2020. "Using Load Forecasting to Control Domestic Battery Energy Storage Systems," Energies, MDPI, vol. 13(15), pages 1-20, August.
    4. Gurupraanesh Raman & Yang Yang & Jimmy Chih-Hsien Peng, 2024. "The social factors shaping community microgrid operation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yeon Ju Baik & Ye Gu Kang, 2022. "Distributed ESS Capacity Decision for Home Appliances and Economic Analysis," Energies, MDPI, vol. 15(15), pages 1-16, July.
    6. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    7. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    8. Sofiane Kichou & Nikolaos Skandalos & Petr Wolf, 2020. "Evaluation of Photovoltaic and Battery Storage Effects on the Load Matching Indicators Based on Real Monitored Data," Energies, MDPI, vol. 13(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    2. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Hyung Tae Kim & Young Gyu Jin & Yong Tae Yoon, 2019. "An Economic Analysis of Load Leveling with Battery Energy Storage Systems (BESS) in an Electricity Market Environment: The Korean Case," Energies, MDPI, vol. 12(9), pages 1-16, April.
    4. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    6. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    7. Qinqin Xia & Yao Zou & Qianggang Wang, 2024. "Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    8. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    9. Cervantes, Jairo & Choobineh, Fred, 2018. "Optimal sizing of a nonutility-scale solar power system and its battery storage," Applied Energy, Elsevier, vol. 216(C), pages 105-115.
    10. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    11. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    12. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    13. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    14. Se Hoon Baik & Young Gyu Jin & Yong Tae Yoon, 2018. "Determining Equipment Capacity of Electric Vehicle Charging Station Operator for Profit Maximization," Energies, MDPI, vol. 11(9), pages 1-15, September.
    15. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    16. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    17. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    18. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2022. "Efficiency of resilient three-part tariff pricing schemes in residential power markets," Energy, Elsevier, vol. 239(PD).
    19. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    20. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3419-:d:264355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.