IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4102-d396107.html
   My bibliography  Save this article

Time-Frequency Analysis Based on Minimum-Norm Spectral Estimation to Detect Induction Motor Faults

Author

Listed:
  • Tomas A. Garcia-Calva

    (HSPdigital-Electronics Department, University of Guanajuato, Salamanca 36700, Mexico)

  • Daniel Morinigo-Sotelo

    (HSPdigital-ADIRE, ITAP, University of Valladolid, 47011 Valladolid, Spain)

  • Oscar Duque-Perez

    (HSPdigital-ADIRE, ITAP, University of Valladolid, 47011 Valladolid, Spain)

  • Arturo Garcia-Perez

    (HSPdigital-Electronics Department, University of Guanajuato, Salamanca 36700, Mexico)

  • Rene de J. Romero-Troncoso

    (HSPdigital-Mechatronics Department, Autonomous University of Querétaro, San Juan del Río 76806, Mexico)

Abstract

In this work, a new time-frequency tool based on minimum-norm spectral estimation is introduced for multiple fault detection in induction motors. Several diagnostic techniques are available to identify certain faults in induction machines; however, they generally give acceptable results only for machines operating under stationary conditions. Induction motors rarely operate under stationary conditions as they are constantly affected by load oscillations, speed waves, unbalanced voltages, and other external conditions. To overcome this issue, different time-frequency analysis techniques have been proposed for fault detection in induction motors under non-stationary regimes. However, most of them have low-resolution, low-accuracy or both. The proposed method employs the minimum-norm spectral estimation to provide high frequency resolution and accuracy in the time-frequency domain. This technique exploits the advantages of non-stationary conditions, where mechanical and electrical stresses in the machine are higher than in stationary conditions, improving the detectability of fault components. Numerical simulation and experimental results are provided to validate the effectiveness of the method in starting current analysis of induction motors.

Suggested Citation

  • Tomas A. Garcia-Calva & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Arturo Garcia-Perez & Rene de J. Romero-Troncoso, 2020. "Time-Frequency Analysis Based on Minimum-Norm Spectral Estimation to Detect Induction Motor Faults," Energies, MDPI, vol. 13(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4102-:d:396107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos N. Gyftakis & Carlos A. Platero & Yucheng Zhang & Santiago Bernal, 2019. "Diagnosis of Static Eccentricity in 3-Phase Synchronous Machines using a Pseudo Zero-Sequence Current," Energies, MDPI, vol. 12(13), pages 1-16, June.
    2. Oscar Duque-Perez & Carlos Del Pozo-Gallego & Daniel Morinigo-Sotelo & Wagner Fontes Godoy, 2019. "Condition Monitoring of Bearing Faults Using the Stator Current and Shrinkage Methods," Energies, MDPI, vol. 12(17), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petr Kacor & Petr Bernat & Petr Moldrik, 2021. "Utilization of Two Sensors in Offline Diagnosis of Squirrel-Cage Rotors of Asynchronous Motors," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    3. Eoghan T. Chelmiah & Violeta I. McLoone & Darren F. Kavanagh, 2023. "Low Complexity Non-Linear Spectral Features and Wear State Models for Remaining Useful Life Estimation of Bearings," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4102-:d:396107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.