IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3219-d259695.html
   My bibliography  Save this article

Design of Power Supply Package for Electricity Sales Companies Considering User Side Energy Storage Configuration

Author

Listed:
  • Qitian Mu

    (Electrical Engineering Department, North China Electric Power University, PO Box 17, 619 Yonghuabei Street, Baoding 071003, China)

  • Yajing Gao

    (Technical and Economic Consultation Center for Electric Power Construction in China Electricity Council, Beijing 100032, China)

  • Yongchun Yang

    (Electrical Engineering Department, North China Electric Power University, PO Box 17, 619 Yonghuabei Street, Baoding 071003, China)

  • Haifeng Liang

    (Electrical Engineering Department, North China Electric Power University, PO Box 17, 619 Yonghuabei Street, Baoding 071003, China)

Abstract

With the deepening of the reform of the power system, electricity sales companies are required to explore new business models and provide multi-faceted marketing programs for users. At the same time, with the reduction of energy storage (ES) costs and the gradual maturity of technology, user side ES, especially Battery ES, has become an effective means for enhancing users’ power supply reliability and reducing electricity bills. Battery ES, as the standby power supply, has a vast user side application. The configuration of ES can help users to ameliorate power quality and reduce electricity cost. It is a critical strategy for electricity sales companies to improve their competitiveness as well. Firstly, this paper analyzes the user side ES and introduces the user side ES development status and relevant policies. Then, we establish an ES configuration optimization model based on the cost–benefit system. To determine the optimal ES capacity of the system’s storage capacity, non-dominated sorting genetic algorithm with elite strategy (NSGA-II) is used as the method solving model. Finally, according to the cost-effectiveness of ES and the period of a contract signed by users, a price package with ES configuration is designed for users to choose.

Suggested Citation

  • Qitian Mu & Yajing Gao & Yongchun Yang & Haifeng Liang, 2019. "Design of Power Supply Package for Electricity Sales Companies Considering User Side Energy Storage Configuration," Energies, MDPI, vol. 12(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3219-:d:259695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Hou & Thai-Thanh Nguyen & Hak-Man Kim & Huihui Song & Yanbin Qu, 2017. "An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications," Energies, MDPI, vol. 10(2), pages 1-20, February.
    2. Weng, Guo-Ming & Li, Chi-Ying Vanessa & Chan, Kwong-Yu, 2019. "Three-electrolyte electrochemical energy storage systems using both anion- and cation-exchange membranes as separators," Energy, Elsevier, vol. 167(C), pages 1011-1018.
    3. Yao Yao & Peichao Zhang & Sijie Chen, 2019. "Aggregating Large-Scale Generalized Energy Storages to Participate in the Energy and Regulation Market," Energies, MDPI, vol. 12(6), pages 1-22, March.
    4. Chuntian Cheng & Bin Luo & Shumin Miao & Xinyu Wu, 2016. "Mid-Term Electricity Market Clearing Price Forecasting with Sparse Data: A Case in Newly-Reformed Yunnan Electricity Market," Energies, MDPI, vol. 9(10), pages 1-22, October.
    5. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    6. Bogdan Tomoiagă & Mircea Chindriş & Andreas Sumper & Antoni Sudria-Andreu & Roberto Villafafila-Robles, 2013. "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II," Energies, MDPI, vol. 6(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongli Liu & Luoqi Wang & Ji Li & Lei Shao & Delong Zhang, 2023. "Research on Smart Power Sales Strategy Considering Load Forecasting and Optimal Allocation of Energy Storage System in China," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Kai Ding & Wei Li & Yimin Qian & Pan Hu & Zengrui Huang, 2022. "Application of User Side Energy Storage System for Power Quality Enhancement of Premium Power Park," Sustainability, MDPI, vol. 14(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    2. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    3. Bin Luo & Shumin Miao & Chuntian Cheng & Yi Lei & Gang Chen & Lang Gao, 2019. "Long-Term Generation Scheduling for Cascade Hydropower Plants Considering Price Correlation between Multiple Markets," Energies, MDPI, vol. 12(12), pages 1-17, June.
    4. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    5. Mohammad Reza Salehizadeh & Mahdi Amidi Koohbijari & Hassan Nouri & Akın Taşcıkaraoğlu & Ozan Erdinç & João P. S. Catalão, 2019. "Bi-Objective Optimization Model for Optimal Placement of Thyristor-Controlled Series Compensator Devices," Energies, MDPI, vol. 12(13), pages 1-16, July.
    6. Javier Contreras, 2017. "Forecasting Models of Electricity Prices," Energies, MDPI, vol. 10(2), pages 1-2, January.
    7. Fernando Lezama & Ricardo Faia & Pedro Faria & Zita Vale, 2020. "Demand Response of Residential Houses Equipped with PV-Battery Systems: An Application Study Using Evolutionary Algorithms," Energies, MDPI, vol. 13(10), pages 1-18, May.
    8. Dante Mora & Ciro Núñez & Nancy Visairo & Juan Segundo & Eugenio Camargo, 2019. "Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application," Energies, MDPI, vol. 12(21), pages 1-17, October.
    9. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    10. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    11. Firas M. F. Flaih & Xiangning Lin & Mohammed Kdair Abd & Samir M. Dawoud & Zhengtian Li & Owolabi Sunday Adio, 2017. "A New Method for Distribution Network Reconfiguration Analysis under Different Load Demands," Energies, MDPI, vol. 10(4), pages 1-19, April.
    12. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    13. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
    14. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    15. Yuzer, B. & Selcuk, H. & Chehade, G. & Demir, M.E. & Dincer, I., 2020. "Evaluation of hydrogen production via electrolysis with ion exchange membranes," Energy, Elsevier, vol. 190(C).
    16. Yizhi Cheng & Peichao Zhang & Xuezhi Liu, 2019. "Collaborative Autonomous Optimization of Interconnected Multi-Energy Systems with Two-Stage Transactive Control Framework," Energies, MDPI, vol. 13(1), pages 1-21, December.
    17. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    18. María Blecua-de-Pedro & Maryori C. Díaz-Ramírez, 2021. "Assessment of Potential Barriers to the Implementation of an Innovative AB-FB Energy Storage System under a Sustainable Perspective," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    19. Carlos Henrique Valério de Moraes & Jonas Lopes de Vilas Boas & Germano Lambert-Torres & Gilberto Capistrano Cunha de Andrade & Claudio Inácio de Almeida Costa, 2022. "Intelligent Power Distribution Restoration Based on a Multi-Objective Bacterial Foraging Optimization Algorithm," Energies, MDPI, vol. 15(4), pages 1-23, February.
    20. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3219-:d:259695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.