IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3169-d258652.html
   My bibliography  Save this article

Contribution to the Energy Situation in Tajikistan by Using Residual Apricot Branches after Pruning as an Alternative Fuel

Author

Listed:
  • Sayfullo Akhmedov

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Tatiana Ivanova

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Surayyo Abdulloeva

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Alexandru Muntean

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

  • Vladimír Krepl

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic)

Abstract

A lack of access to energy in the rural areas of Tajikistan is one of the current problems of the country. Tajikistan’s goal is to reach energy independency, and the main prospects for the country’s energy sector, which relies on energy imports during the long heating periods, are: higher exploitations of hydropower and development of other renewables, mainly biofuels. Tajikistan is a highly agrarian country, where agriculture is the dominant source of income for the majority of the population. Apricot belongs to the primary agricultural commodities; however, the cultivation and management of apricot orchards is associated with the annual accumulation of significant amounts of wood waste (residual branches after pruning), which represent a source of easily available biomass. Thus, the main focus of the present research was to investigate the properties (physical, chemical and mechanical) of densified briquettes and pellets from the residual apricot tree branches through the laboratory measurements by the standard methodologies and to calculate the energy yield and potential of this material for Tajikistan as a similar study has not been conducted yet. The results showed a good quality of apricot-based biofuels characterised by the high calorific value ( NCV dry basis of 19.3 MJ kg −1 ), relatively low ash content (1.7%) and suitable values of the main chemical elements that fulfil the standard requirement on graded wooden biofuels. The total yearly energy yield of residual apricot branches was calculated to be 3245 TJ.

Suggested Citation

  • Sayfullo Akhmedov & Tatiana Ivanova & Surayyo Abdulloeva & Alexandru Muntean & Vladimír Krepl, 2019. "Contribution to the Energy Situation in Tajikistan by Using Residual Apricot Branches after Pruning as an Alternative Fuel," Energies, MDPI, vol. 12(16), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3169-:d:258652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3169/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3169/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laldjebaev, Murodbek & Morreale, Stephen J. & Sovacool, Benjamin K. & Kassam, Karim-Aly S., 2018. "Rethinking energy security and services in practice: National vulnerability and three energy pathways in Tajikistan," Energy Policy, Elsevier, vol. 114(C), pages 39-50.
    2. Pizzi, A. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Mancini, M. & Toscano, G., 2018. "Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects," Renewable Energy, Elsevier, vol. 121(C), pages 513-520.
    3. Daryl Fields & Artur Kochnakyan & Gary Stuggins & John Besant-Jones, 2012. "Tajikistan’s Winter Energy Crisis : Electricity Supply and Demand Alternatives," World Bank Publications - Reports 17149, The World Bank Group.
    4. Fernández-Puratich, Harald & Hernández, Diógenes & Tenreiro, Claudio, 2015. "Analysis of energetic performance of vine biomass residues as an alternative fuel for Chilean wine industry," Renewable Energy, Elsevier, vol. 83(C), pages 1260-1267.
    5. Manzone, Marco & Paravidino, Elisa & Bonifacino, Gabriella & Balsari, Paolo, 2016. "Biomass availability and quality produced by vineyard management during a period of 15 years," Renewable Energy, Elsevier, vol. 99(C), pages 465-471.
    6. Doukas, Haris & Marinakis, Vangelis & Karakosta, Charikleia & Psarras, John, 2012. "Promoting renewables in the energy sector of Tajikistan," Renewable Energy, Elsevier, vol. 39(1), pages 411-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Emmanouil Karampinis & Michael Alexandros Kougioumtzis & Panagiotis Grammelis & Luigi Pari, 2020. "Machine Performance and Hog Fuel Quality Evaluation in Olive Tree Pruning Harvesting Conducted Using a Towed Shredder on Flat and Hilly Fields," Energies, MDPI, vol. 13(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasoulinezhad, Ehsan & Sung, Jinsok & Talipova, Amina & Taghizadeh-Hesary, Farhad, 2022. "Analyzing energy trade policy in Central Asia using the intercountry trade force approach," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 441-454.
    2. Elena Shadrina, 2020. "Non-Hydropower Renewable Energy in Central Asia: Assessment of Deployment Status and Analysis of Underlying Factors," Energies, MDPI, vol. 13(11), pages 1-29, June.
    3. Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
    4. Pizzi, A. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Mancini, M. & Toscano, G., 2018. "Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects," Renewable Energy, Elsevier, vol. 121(C), pages 513-520.
    5. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    6. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    7. Tiago Florindo & Ana I. Ferraz & Ana C. Rodrigues & Leonel J. R. Nunes, 2022. "Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    8. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    9. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    10. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
    11. Patricia Gurria Albusac & Hugo Gonzalez Hermoso & Tevecia Ronzon & Saulius Tamosiunas & Raul Lopez & Sara Garcia Condado & Giulia Ronchetti & Jordi Guillen & Manjola Banja & Gianluca Fiore & Robert M’, 2020. "Biomass flows in the European Union: EU Biomass Flows tool, version 2020," JRC Research Reports JRC122379, Joint Research Centre.
    12. Zhu, Ying & Yan, Xiaxia & Chen, Cong & Li, Yongping & Huang, Guohe & Li, Yexin, 2019. "Analysis of industry-air quality control in ecologically fragile coal-dependent cities by an uncertain Gaussian diffusion-Hurwicz criterion model," Energy Policy, Elsevier, vol. 132(C), pages 1191-1205.
    13. Kedar Mehta & Mathias Ehrenwirth & Christoph Trinkl & Wilfried Zörner & Rick Greenough, 2021. "The Energy Situation in Central Asia: A Comprehensive Energy Review Focusing on Rural Areas," Energies, MDPI, vol. 14(10), pages 1-27, May.
    14. Patricia Gurria & Tevecia Ronzon & Saulius Tamosiunas & Raul Lopez & Sara Garcia Condado & Jordi Guillen & Noemi Cazzaniga & Ragnar Jonsson & Manjola Banja & Gianluca Fiore & Andrea Camia & Robert M'B, 2017. "Biomass flows in the European Union: The Sankey biomass diagram - towards a cross-set integration of biomass," JRC Research Reports JRC106502, Joint Research Centre.
    15. Otrachshenko, Vladimir & Hartwell, Christopher A. & Popova, Olga, 2023. "Energy efficiency, market competition, and quality certification: Lessons from Central Asia," Energy Policy, Elsevier, vol. 177(C).
    16. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    17. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    18. Fernández-Puratich, H. & Hernández, D. & Lerma Arce, V., 2017. "Characterization and cost savings of pellets fabricated from Zea mays waste from corn mills combined with Pinus radiata," Renewable Energy, Elsevier, vol. 114(PB), pages 448-454.
    19. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    20. Liu, Jing & Hu, Jiantuan & Wan, Qing & Ming, Junren & Shuai, Chuanmin, 2024. "Energy services for solar PV projects: Exploring the accessibility and affordability of clean energy for rural China," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3169-:d:258652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.