IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3054-d255797.html
   My bibliography  Save this article

Analysis of Influencing Factors and Trend Forecast of Carbon Emission from Energy Consumption in China Based on Expanded STIRPAT Model

Author

Listed:
  • Zhen Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yanbin Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Shuangshuang Shao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

With the convening of the annual global climate conference, the issue of global climate change has gradually become the focus of attention of the international community. As the largest carbon emitter in the world, China is facing a serious situation of carbon emission reduction. This paper uses the IPCC (The Intergovernmental Panel on Climate Change) method to calculate the carbon emissions of energy consumption in China from 1996 to 2016, and uses it as a dependent variable to analyze the influencing factors. In this paper, five factors, total population, per capita GDP (Gross Domestic Product), urbanization level, primary energy consumption structure, technology level, and industrial structure are selected as the influencing factors of carbon emissions. Based on the expanded STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model, the influencing degree of different factors on carbon emissions of energy consumption is analyzed. The results show that the order of impact on carbon emissions from high to low is total population, per capita GDP, technology level, industrial structure, primary energy consumption structure, and urbanization level. On the basis of the above research, the carbon emissions of China′s energy consumption in the future are predicted under eight different scenarios. The results show that, when the population and economy keep a low growth rate, while improving the technology level can effectively control carbon emissions from energy consumption, China′s carbon emissions from energy consumption will reach 302.82 million tons in 2020.

Suggested Citation

  • Zhen Li & Yanbin Li & Shuangshuang Shao, 2019. "Analysis of Influencing Factors and Trend Forecast of Carbon Emission from Energy Consumption in China Based on Expanded STIRPAT Model," Energies, MDPI, vol. 12(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3054-:d:255797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwa Elsherif, 2024. "Nexus between Blue Economy, Renewable Energy and Environmental Sustainability in the MENA Region: Evidence from Panel Threshold Regression," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 169-185, July.
    2. Tiangui Lv & Han Hu & Hualin Xie & Xinmin Zhang & Li Wang & Xiaoqiang Shen, 2023. "An empirical relationship between urbanization and carbon emissions in an ecological civilization demonstration area of China based on the STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2465-2486, March.
    3. Jianbo Dong & Min Zhang & Guangbin Cheng, 2022. "Impacts of Upgrading of Consumption Structure and Human Capital Level on Carbon Emissions—Empirical Evidence Based on China’s Provincial Panel Data," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    4. Wen-Hsien Tsai, 2020. "Carbon Emission Reduction—Carbon Tax, Carbon Trading, and Carbon Offset," Energies, MDPI, vol. 13(22), pages 1-7, November.
    5. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    2. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.
    3. Bharat Prasad Bhandari & Subodh Dhakal & Ching-Ying Tsou, 2024. "Assessing the Prediction Accuracy of Frequency Ratio, Weight of Evidence, Shannon Entropy, and Information Value Methods for Landslide Susceptibility in the Siwalik Hills of Nepal," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
    4. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    5. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    6. Lu Gan & Yuanyuan Wang & Yusheng Wang & Benjamin Lev & Wenjing Shen & Wen Jiang, 2021. "Coupling coordination analysis with data-driven technology for disaster–economy–ecology system: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2123-2153, July.
    7. Sholeh Hadi Pramono & Mahdin Rohmatillah & Eka Maulana & Rini Nur Hasanah & Fakhriy Hario, 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System," Energies, MDPI, vol. 12(17), pages 1-16, August.
    8. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    9. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    10. Syed Muhammad Raza Abidi & Mushtaq Hussain & Yonglin Xu & Wu Zhang, 2018. "Prediction of Confusion Attempting Algebra Homework in an Intelligent Tutoring System through Machine Learning Techniques for Educational Sustainable Development," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    11. Yaquelin Verenice Pantoja-Pacheco & Armando Javier Ríos-Lira & José Antonio Vázquez-López & José Alfredo Jiménez-García & Martha Laura Asato-España & Moisés Tapia-Esquivias, 2021. "One Note for Fractionation and Increase for Mixed-Level Designs When the Levels Are Not Multiple," Mathematics, MDPI, vol. 9(13), pages 1-20, June.
    12. Radhakrishnan Angamuthu Chinnathambi & Anupam Mukherjee & Mitch Campion & Hossein Salehfar & Timothy M. Hansen & Jeremy Lin & Prakash Ranganathan, 2018. "A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets," Forecasting, MDPI, vol. 1(1), pages 1-21, July.
    13. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    14. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    15. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    16. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    17. Lawal, Abiola S. & Servadio, Joseph L. & Davis, Tate & Ramaswami, Anu & Botchwey, Nisha & Russell, Armistead G., 2021. "Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators," Applied Energy, Elsevier, vol. 283(C).
    18. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    19. Marwen Elkamel & Lily Schleider & Eduardo L. Pasiliao & Ali Diabat & Qipeng P. Zheng, 2020. "Long-Term Electricity Demand Prediction via Socioeconomic Factors—A Machine Learning Approach with Florida as a Case Study," Energies, MDPI, vol. 13(15), pages 1-21, August.
    20. Sojin Park & Nahyun Kwon & Yonghan Ahn, 2019. "Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP," Sustainability, MDPI, vol. 11(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3054-:d:255797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.