IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i3d10.1007_s10668-022-02144-6.html
   My bibliography  Save this article

An empirical relationship between urbanization and carbon emissions in an ecological civilization demonstration area of China based on the STIRPAT model

Author

Listed:
  • Tiangui Lv

    (Jiangxi University of Finance and Economics
    Jiangxi University of Finance and Economics)

  • Han Hu

    (Jiangxi University of Finance and Economics)

  • Hualin Xie

    (Jiangxi University of Finance and Economics)

  • Xinmin Zhang

    (Jiangxi University of Finance and Economics)

  • Li Wang

    (Jiangxi University of Finance and Economics)

  • Xiaoqiang Shen

    (Lanzhou University)

Abstract

To understand the complex relationship and influencing mechanisms between urbanization and carbon emissions, the impacts and differential effects of urbanization and population on carbon emissions in an ecological civilization demonstration area of Jiangxi Province, China, were analyzed using the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model. Moreover, scenario analysis methods were applied to define nine development scenarios to predict future carbon emissions in Jiangxi. The research results indicate that (1) in terms of the spatial and temporal patterns, carbon emissions in Jiangxi Province are spatially characterized as higher in northern and western Jiangxi, balanced in northeastern and central Jiangxi, and lower in southern Jiangxi. (2) Regarding the directions of the spatial and temporal patterns, carbon emissions in Jiangxi vary unevenly. Carbon emissions in the outer peripheral area increase notably. The center of the standard deviational ellipse shifts to the northeast by approximately 4.11°, and the overall trend of its spatial pattern changes from northeast–southwest to east–west. (3) Regarding the influencing factors, for every 1% change in population, the economy, technology, and urbanization, carbon emissions increase by 3.2085%, 3.5673%, 0.5232%, and 1.7377%, respectively. There exists an inverted U-shaped nonlinear relationship between economic factors and carbon emissions. From the horizontal perspective, the coefficient of elasticity of the sample containing developed-region sample is significantly lower than those of the total sample and the sample containing underdeveloped-region. (4) Scenario analysis revealed that a low population growth rate, high per capita GDP growth rate, and low energy intensity growth rate effectively control future carbon emissions in Jiangxi Province. When formulating carbon emissions reduction policies, consideration should be given to the maintenance of an appropriate population size, economic structure optimization, cleaner production technology development and regional differences.

Suggested Citation

  • Tiangui Lv & Han Hu & Hualin Xie & Xinmin Zhang & Li Wang & Xiaoqiang Shen, 2023. "An empirical relationship between urbanization and carbon emissions in an ecological civilization demonstration area of China based on the STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2465-2486, March.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02144-6
    DOI: 10.1007/s10668-022-02144-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02144-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02144-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    2. Sharma, Susan Sunila, 2011. "Determinants of carbon dioxide emissions: Empirical evidence from 69 countries," Applied Energy, Elsevier, vol. 88(1), pages 376-382, January.
    3. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    4. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    5. Zhen Li & Yanbin Li & Shuangshuang Shao, 2019. "Analysis of Influencing Factors and Trend Forecast of Carbon Emission from Energy Consumption in China Based on Expanded STIRPAT Model," Energies, MDPI, vol. 12(16), pages 1-14, August.
    6. Al-mulali, Usama & Binti Che Sab, Che Normee & Fereidouni, Hassan Gholipour, 2012. "Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission," Energy, Elsevier, vol. 46(1), pages 156-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammet Daştan & Hakan Eygü, 2024. "An empirical investigation of the link between economic growth, unemployment, and ecological footprint in Turkey: Bridging the EKC and EPC hypotheses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18957-18988, July.
    2. Shabir Mohsin Hashmi & Xuyou Yu & Qasim Raza Syed & Li Rong, 2024. "Testing the environmental Kuznets curve (EKC) hypothesis amidst climate policy uncertainty: sectoral analysis using the novel Fourier ARDL approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16503-16522, July.
    3. Ruixu Chen & Yang Chen & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Interplay of Urbanization and Ecological Environment: Coordinated Development and Drivers," Land, MDPI, vol. 12(7), pages 1-17, July.
    4. Xitao Yu & Jianhong Cheng & Liqiong Li, 2023. "Prediction of CO 2 Emissions Related to Energy Consumption for Rural Governance," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    5. Dulal Chandra Pattak & Farian Tahrim & Mahdi Salehi & Liton Chandra Voumik & Salma Akter & Mohammad Ridwan & Beata Sadowska & Grzegorz Zimon, 2023. "The Driving Factors of Italy’s CO 2 Emissions Based on the STIRPAT Model: ARDL, FMOLS, DOLS, and CCR Approaches," Energies, MDPI, vol. 16(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng, Pengfei & Guo, Xiaohui, 2016. "The Long-run and Short-run Impacts of Urbanization on Carbon Dioxide Emissions," Economic Modelling, Elsevier, vol. 53(C), pages 208-215.
    2. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    3. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    4. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    5. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
    6. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    7. Yixi Xue & Jie Ren & Xiaohang Bi, 2019. "Impact of Influencing Factors on CO 2 Emissions in the Yangtze River Delta during Urbanization," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    8. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    9. Asane-Otoo, Emmanuel, 2015. "Carbon footprint and emission determinants in Africa," Energy, Elsevier, vol. 82(C), pages 426-435.
    10. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    11. Xiangrong Ma & Jianping Ge & Wei Wang, 2017. "The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: a cointegrated vector error correction (VEC) analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1017-1033, June.
    12. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    13. Lau, Chi Keung & Mahalik, Mantu Kumar & Rather, Kashif Nesar & Gozgor, Giray, 2023. "The impact of green quality of the energy consumption on carbon emissions in the United States," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 850-860.
    14. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    15. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    16. Muhammad, Sulaman & Long, Xingle & Salman, Muhammad & Dauda, Lamini, 2020. "Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries," Energy, Elsevier, vol. 196(C).
    17. Zhou, Yang & Liu, Yansui & Wu, Wenxiang & Li, Yurui, 2015. "Effects of rural–urban development transformation on energy consumption and CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 863-875.
    18. Ahsan Anwar & Avik Sinha & Arshian Sharif & Muhammad Siddique & Shoaib Irshad & Waseem Anwar & Summaira Malik, 2022. "The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6556-6576, May.
    19. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    20. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02144-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.