IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2092-d1350265.html
   My bibliography  Save this article

Assessing the Prediction Accuracy of Frequency Ratio, Weight of Evidence, Shannon Entropy, and Information Value Methods for Landslide Susceptibility in the Siwalik Hills of Nepal

Author

Listed:
  • Bharat Prasad Bhandari

    (Central Department of Environmental Science, Tribhuvan University, Kathmandu 44600, Nepal)

  • Subodh Dhakal

    (Department of Geology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal)

  • Ching-Ying Tsou

    (Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan)

Abstract

The main objective of this study is to assess the prediction and success rate based on bivariate frequency ratio (FR), weight of evidence (WoE), Shannon entropy (SE), and information value (IV) models for landslide susceptibility in the sedimentary terrain of Nepal Himalaya, as the area is facing threat for sustainable development as well as sustainable resource management. This study also seeks to evaluate the causative factors for landslide susceptibility. Initially, a landslide inventory map was created, consisting of 1158 polygons. These polygons were randomly divided into two sets, with a ratio of 70% for training and 30% for testing data. The multicollinearity approach was evaluated to assess the relevance of selected conditioning variables and their inclusion in the model construction process. The area under the curve (AUC) and other arithmetic evaluation methods were employed to validate and compare the outcomes of the models. In comparison, the predictive accuracy of the FR model surpasses that of the IV and SE models. The success rates, ranked in descending order, are as follows: WoE (79.9%), FR (75.3%), IV (74.4%), and SE (73.2%). Similarly, the success rates of four distinct models, namely WoE, FR, IV, and SE, are 85%, 78.75%, 78.57%, and 77.2%, correspondingly. All models have an accuracy and prediction rate exceeding 70%, making them suitable for assessing landslide susceptibility in the Siwalik Hills of Nepal. Nevertheless, the weight of evidence model provides more precise outcomes than other models. This study is expected to provide important information for road and settlement sustainability in the study area.

Suggested Citation

  • Bharat Prasad Bhandari & Subodh Dhakal & Ching-Ying Tsou, 2024. "Assessing the Prediction Accuracy of Frequency Ratio, Weight of Evidence, Shannon Entropy, and Information Value Methods for Landslide Susceptibility in the Siwalik Hills of Nepal," Sustainability, MDPI, vol. 16(5), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2092-:d:1350265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    2. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    2. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    3. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.
    4. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    5. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    6. Lu Gan & Yuanyuan Wang & Yusheng Wang & Benjamin Lev & Wenjing Shen & Wen Jiang, 2021. "Coupling coordination analysis with data-driven technology for disaster–economy–ecology system: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2123-2153, July.
    7. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    8. Sholeh Hadi Pramono & Mahdin Rohmatillah & Eka Maulana & Rini Nur Hasanah & Fakhriy Hario, 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System," Energies, MDPI, vol. 12(17), pages 1-16, August.
    9. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    10. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    11. Syed Muhammad Raza Abidi & Mushtaq Hussain & Yonglin Xu & Wu Zhang, 2018. "Prediction of Confusion Attempting Algebra Homework in an Intelligent Tutoring System through Machine Learning Techniques for Educational Sustainable Development," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    12. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    13. Weidong Wang & Zhuolei He & Zheng Han & Yange Li & Jie Dou & Jianling Huang, 2020. "Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3239-3261, September.
    14. Biswajeet Pradhan & Mohammed Abokharima & Mustafa Jebur & Mahyat Tehrany, 2014. "Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1019-1042, September.
    15. Yaquelin Verenice Pantoja-Pacheco & Armando Javier Ríos-Lira & José Antonio Vázquez-López & José Alfredo Jiménez-García & Martha Laura Asato-España & Moisés Tapia-Esquivias, 2021. "One Note for Fractionation and Increase for Mixed-Level Designs When the Levels Are Not Multiple," Mathematics, MDPI, vol. 9(13), pages 1-20, June.
    16. Radhakrishnan Angamuthu Chinnathambi & Anupam Mukherjee & Mitch Campion & Hossein Salehfar & Timothy M. Hansen & Jeremy Lin & Prakash Ranganathan, 2018. "A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets," Forecasting, MDPI, vol. 1(1), pages 1-21, July.
    17. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    18. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    19. Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
    20. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2092-:d:1350265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.