IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3051-d255751.html
   My bibliography  Save this article

Stochastic Dynamic Analysis of an Offshore Wind Turbine Structure by the Path Integration Method

Author

Listed:
  • Yue Zhao

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China
    PowerChina Huadong Engineering Corporation Limited, No.201 Gaojiao Road, Yuhang District, Hangzhou 311122, China)

  • Jijian Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Chong Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Xiaofeng Dong

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Haijun Wang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Chunxi Liu

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Qi Jiang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Pengwen Wang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

Abstract

Stochastic dynamic analysis of an offshore wind turbine (OWT) structure plays an important role in the structural safety evaluation and reliability assessment of the structure. In this paper, the OWT structure is simplified as a linear single-degree-of-freedom (SDOF) system and the corresponding joint probability density function (PDF) of the dynamic response is calculated by the implementation of the path integration (PI) method. Filtered Gaussian white noise, which is obtained from the utilization of a second-order filter, is considered as horizontal wind excitation and used to excite the SDOF system. Thus, the SDOF model and the second-order linear filter model constitute a four-dimensional dynamic system. Further, a detailed three-dimensional finite element model is applied to obtain the natural frequency of the OWT and the efficient PI method, which is modified based on the fast Fourier transform (FFT) convolution method, is also utilized to reduce the execution time to obtain the PDF of the response. Two important parameters of wind conditions, i.e., horizontal mean wind speed and turbulence standard deviation, are investigated to highlight the influences on the PDF of the dynamic response and the reliability of the OWT.

Suggested Citation

  • Yue Zhao & Jijian Lian & Chong Lian & Xiaofeng Dong & Haijun Wang & Chunxi Liu & Qi Jiang & Pengwen Wang, 2019. "Stochastic Dynamic Analysis of an Offshore Wind Turbine Structure by the Path Integration Method," Energies, MDPI, vol. 12(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3051-:d:255751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michalak, Piotr & Zimny, Jacek, 2011. "Wind energy development in the world, Europe and Poland from 1995 to 2009; current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2330-2341, June.
    2. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    3. Ahmed, Noor A. & Cameron, Michael, 2014. "The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 439-460.
    4. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    5. Snyder, Brian & Kaiser, Mark J., 2009. "A comparison of offshore wind power development in europe and the U.S.: Patterns and drivers of development," Applied Energy, Elsevier, vol. 86(10), pages 1845-1856, October.
    6. Nam, Woochul & Oh, Ki-Yong & Epureanu, Bogdan I., 2019. "Evolution of the dynamic response and its effects on the serviceability of offshore wind turbines with stochastic loads and soil degradation," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 151-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Gi Kim & Bum-Joon Kim, 2020. "Design Optimization of Conical Concrete Support Structure for Offshore Wind Turbine," Energies, MDPI, vol. 13(18), pages 1-21, September.
    2. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    2. J Charles Rajesh Kumar & D Vinod Kumar & D Baskar & B Mary Arunsi & R Jenova & MA Majid, 2021. "Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India," Energy & Environment, , vol. 32(4), pages 565-603, June.
    3. Asad Rehman & Mohsin Ali Koondhar & Zafar Ali & Munawar Jamali & Ragab A. El-Sehiemy, 2023. "Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    4. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    5. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
    6. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    7. Brzezińska-Rawa, Anna & Goździewicz-Biechońska, Justyna, 2014. "Recent developments in the wind energy sector in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 79-87.
    8. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    9. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    10. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    12. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    13. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    14. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    15. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    16. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    17. Snyder, Brian & Kaiser, Mark J., 2009. "Offshore wind power in the US: Regulatory issues and models for regulation," Energy Policy, Elsevier, vol. 37(11), pages 4442-4453, November.
    18. Luengo, Jorge & Negro, Vicente & García-Barba, Javier & López-Gutiérrez, José-Santos & Esteban, M. Dolores, 2019. "New detected uncertainties in the design of foundations for offshore Wind Turbines," Renewable Energy, Elsevier, vol. 131(C), pages 667-677.
    19. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    20. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3051-:d:255751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.