IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p3001-d254561.html
   My bibliography  Save this article

Optimal Sizing of Hydro-PV-Pumped Storage Integrated Generation System Considering Uncertainty of PV, Load and Price

Author

Listed:
  • Jichun Liu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Jianhua Li

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Yue Xiang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Shuai Hu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Effectively using complementary property of various renewable energy sources by an integrated generation system is a concerned study. Considering the uncertainty of PV, spot price and load, the sizing of integrated generation system with combined market operation is a difficult problem. Based on the above uncertain factors, the sizing method of hydro-PV-pumped storage integrated generation system is proposed in this paper. The output characteristic model is established by utilizing the wide range of hydropower output and flexible schedulability of pumped storage. Then, the volatility ratio of the power exchange curve and load tracking coefficient are the evaluation index of the complementary effect, which ensures the stable and smooth output curve. Further, the uncertainty models of PV, spot price and load are established, considering that, the operation of the power generation system is optimized in the day-ahead market, and the predictive deviation of PV and load is balanced in a real-time market. Based on the above factors, the sizing model of the hydro-PV-pumped storage integrated energy system was proposed based on economics and complementary index. Finally, a case study was undertaken, the sensitivity analysis of the economy and complementarity indices was carried out, as the complementarity index is improved, the economy would be down. Further, the optimal sizing of hydro-PV-pumped storage integrated generation system was obtained, hydropower was a total of 165 MW, PV was 100 MW and pumped storage was 50 MW, that could ensure the economy while meeting the complementary index, the effectiveness of the model proposed was verified.

Suggested Citation

  • Jichun Liu & Jianhua Li & Yue Xiang & Shuai Hu, 2019. "Optimal Sizing of Hydro-PV-Pumped Storage Integrated Generation System Considering Uncertainty of PV, Load and Price," Energies, MDPI, vol. 12(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3001-:d:254561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/3001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/3001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hongxuan & Lu, Zongxiang & Hu, Wei & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Coordinated optimal operation of hydro–wind–solar integrated systems," Applied Energy, Elsevier, vol. 242(C), pages 883-896.
    2. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    3. Sun, Kaiqi & Li, Ke-Jun & Pan, Jiuping & Liu, Yong & Liu, Yilu, 2019. "An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system," Applied Energy, Elsevier, vol. 242(C), pages 1155-1163.
    4. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyao Zhang & Diyi Chen & Jing Liu & Beibei Xu & Venkateshkumar M, 2020. "A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    4. Alaa Farah & Hamdy Hassan & Alaaeldin M. Abdelshafy & Abdelfatah M. Mohamed, 2020. "Optimal Scheduling of Hybrid Multi-Carrier System Feeding Electrical/Thermal Load Based on Particle Swarm Algorithm," Sustainability, MDPI, vol. 12(11), pages 1-21, June.
    5. Yan Lu & Jing Xiang & Pengyun Geng & Huimin Zhang & Lili Liu & Haoran Wang & Jiajie Kong & Mingli Cui & Yan Li & Cheng Zhong & Tiantian Feng, 2023. "Coupling Mechanism and Synergic Development of Carbon Market and Electricity Market in the Region of Beijing–Tianjin–Hebei," Energies, MDPI, vol. 16(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    3. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    4. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    7. Li, Yan & Ming, Bo & Huang, Qiang & Wang, Yimin & Liu, Pan & Guo, Pengcheng, 2022. "Identifying effective operating rules for large hydro–solar–wind hybrid systems based on an implicit stochastic optimization framework," Energy, Elsevier, vol. 245(C).
    8. Jichun Liu & Yangfang Yang & Yue Xiang & Junyong Liu, 2019. "A Power Exchange Strategy for Multiple Areas with Hydro Power and Flexible Loads," Energies, MDPI, vol. 12(6), pages 1-17, March.
    9. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    12. Diongue, Abdou Kâ & Guégan, Dominique & Vignal, Bertrand, 2009. "Forecasting electricity spot market prices with a k-factor GIGARCH process," Applied Energy, Elsevier, vol. 86(4), pages 505-510, April.
    13. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    14. Sinha, Pankaj & Mathur, Kritika, 2016. "Empirical Analysis of Developments in the Day Ahead Electricity Markets in India," MPRA Paper 72969, University Library of Munich, Germany.
    15. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    16. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    17. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    18. Marie Bessec & Julien Fouquau & Sophie Meritet, 2016. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Applied Economics, Taylor & Francis Journals, vol. 48(5), pages 361-378, January.
    19. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    20. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:3001-:d:254561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.