IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4701-d369323.html
   My bibliography  Save this article

Optimal Scheduling of Hybrid Multi-Carrier System Feeding Electrical/Thermal Load Based on Particle Swarm Algorithm

Author

Listed:
  • Alaa Farah

    (Energy Resources Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
    Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt)

  • Hamdy Hassan

    (Energy Resources Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
    Mechanical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt)

  • Alaaeldin M. Abdelshafy

    (Energy Resources Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
    Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt)

  • Abdelfatah M. Mohamed

    (Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt
    Mechatronics and Robotics Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt)

Abstract

In this paper, the optimum coordination of an energy hub system, fed with multiple fuel options (natural gas, wood chips biomass, and electricity) to guarantee economically, environmentally friendly, and reliable operation of an energy hub, is presented. The objective is to lessen the total operating expenses and CO 2 emissions of the hub system. Additionally, the effect of renewable energy sources as photovoltaics (PVs) and wind turbines (WTs) on energy hub performance is investigated. A comparison of various configurations of the hub system is done. The proper planning of the hub elements is determined by a multi-objective particle swarm optimization (PSO) algorithm to achieve the lowest level of the gross running cost and total system emissions, simultaneously. The outcomes show that the natural gas turbine (NGT) is superior to the biomass generating unit in lowering the gross operating expenses, while using the biomass wood chips plant is most effective in lessening the total CO 2 emissions than the NGT plant. Furthermore, the combination of the natural gas turbine, biomass generator, photovoltaics, and wind turbines enhances the operation of the hub infrastructures by lessening both the gross operating cost and overall CO 2 emission simultaneously.

Suggested Citation

  • Alaa Farah & Hamdy Hassan & Alaaeldin M. Abdelshafy & Abdelfatah M. Mohamed, 2020. "Optimal Scheduling of Hybrid Multi-Carrier System Feeding Electrical/Thermal Load Based on Particle Swarm Algorithm," Sustainability, MDPI, vol. 12(11), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4701-:d:369323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Huang & Kai Yang & Weiting Zhang & Kwang Y. Lee, 2018. "Hierarchical Energy Management for the MultiEnergy Carriers System with Different Interest Bodies," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Lorestani, Alireza & Gharehpetian, G.B. & Nazari, Mohammad Hassan, 2019. "Optimal sizing and techno-economic analysis of energy- and cost-efficient standalone multi-carrier microgrid," Energy, Elsevier, vol. 178(C), pages 751-764.
    3. Segurado, R. & Pereira, S. & Correia, D. & Costa, M., 2019. "Techno-economic analysis of a trigeneration system based on biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 501-514.
    4. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    5. Jichun Liu & Jianhua Li & Yue Xiang & Shuai Hu, 2019. "Optimal Sizing of Hydro-PV-Pumped Storage Integrated Generation System Considering Uncertainty of PV, Load and Price," Energies, MDPI, vol. 12(15), pages 1-23, August.
    6. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    7. Qiongjie Dai & Jicheng Liu & Qiushuang Wei, 2019. "Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based on Multi-Agent Particle Swarm Optimization Algorithm," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    8. Feng Qi & Fushuan Wen & Xunyuan Liu & Md. Abdus Salam, 2017. "A Residential Energy Hub Model with a Concentrating Solar Power Plant and Electric Vehicles," Energies, MDPI, vol. 10(8), pages 1-17, August.
    9. Wang, Yi & Zhang, Ning & Zhuo, Zhenyu & Kang, Chongqing & Kirschen, Daniel, 2018. "Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch," Applied Energy, Elsevier, vol. 210(C), pages 1141-1150.
    10. Paolo Conti & Giovanni Lutzemberger & Eva Schito & Davide Poli & Daniele Testi, 2019. "Multi-Objective Optimization of Off-Grid Hybrid Renewable Energy Systems in Buildings with Prior Design-Variable Screening," Energies, MDPI, vol. 12(15), pages 1-25, August.
    11. Heba-Allah I. ElAzab & R. A. Swief & Noha H. El-Amary & H. K. Temraz, 2018. "Unit Commitment Towards Decarbonized Network Facing Fixed and Stochastic Resources Applying Water Cycle Optimization," Energies, MDPI, vol. 11(5), pages 1-21, May.
    12. Carlos Roldán-Blay & Vladimiro Miranda & Leonel Carvalho & Carlos Roldán-Porta, 2019. "Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids," Sustainability, MDPI, vol. 11(24), pages 1-26, December.
    13. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Ruiz-Canales & Manuel Ferrández-Villena García, 2021. "Sustainable Applications in Agriculture," Sustainability, MDPI, vol. 13(8), pages 1-5, April.
    2. Khashayar Hamedi & Shahrbanoo Sadeghi & Saeed Esfandi & Mahdi Azimian & Hessam Golmohamadi, 2021. "Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    3. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Pepiciello & Alfredo Vaccaro & Mario Mañana, 2019. "Robust Optimization of Energy Hubs Operation Based on Extended Affine Arithmetic," Energies, MDPI, vol. 12(12), pages 1-15, June.
    2. Pierpaolo Garavaso & Fabio Bignucolo & Jacopo Vivian & Giulia Alessio & Michele De Carli, 2021. "Optimal Planning and Operation of a Residential Energy Community under Shared Electricity Incentives," Energies, MDPI, vol. 14(8), pages 1-24, April.
    3. Yining Zhang & Yubin He & Mingyu Yan & Chuangxin Guo & Yi Ding, 2018. "Linearized Stochastic Scheduling of Interconnected Energy Hubs Considering Integrated Demand Response and Wind Uncertainty," Energies, MDPI, vol. 11(9), pages 1-23, September.
    4. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    5. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    6. Simon Steinschaden & José Baptista, 2020. "Development of an Efficient Tool for Solar Charging Station Management for Electric Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    9. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    10. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    11. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    12. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    13. Ali Dargahi & Khezr Sanjani & Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Sajjad Tohidi & Mousa Marzband, 2020. "Scheduling of Air Conditioning and Thermal Energy Storage Systems Considering Demand Response Programs," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    14. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    15. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    17. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    18. Mahyar Lasemi Imeni & Mohammad Sadegh Ghazizadeh & Mohammad Ali Lasemi & Zhenyu Yang, 2023. "Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach," Energies, MDPI, vol. 16(2), pages 1-23, January.
    19. Hoseini, Naghi & Sheikholeslami, Abdolreza & Barforoushi, Taghi & Latify, Mohammad Amin, 2020. "Preventive maintenance mid-term scheduling of resources in multi-carrier energy systems," Energy, Elsevier, vol. 197(C).
    20. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4701-:d:369323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.