IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2567-d245454.html
   My bibliography  Save this article

Global CO 2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering

Author

Listed:
  • Ilhan Chang

    (School of Engineering and Information Technology (SEIT), University of New South Wales (UNSW), Canberra, ACT 2600, Australia)

  • Minhyeong Lee

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea)

  • Gye-Chun Cho

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea)

Abstract

Global warming and climate change caused by greenhouse gas (GHG) emissions have rapidly increased the occurrence of abnormal climate events, and both the scale and frequency of geotechnical engineering hazards (GEHs) accordingly. In response, geotechnical engineers have a responsibility to provide countermeasures to mitigate GEHs through various ground improvement techniques. Thus, this study provides a comprehensive review of the possible correlation between GHG emissions and GEHs using statistical data, a review of ground improvement methods that have been studied to reduce the carbon footprint of geotechnical engineering, and a discussion of the direction in which geotechnical engineering should proceed in the future.

Suggested Citation

  • Ilhan Chang & Minhyeong Lee & Gye-Chun Cho, 2019. "Global CO 2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering," Energies, MDPI, vol. 12(13), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2567-:d:245454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Toya, Hideki & Skidmore, Mark, 2007. "Economic development and the impacts of natural disasters," Economics Letters, Elsevier, vol. 94(1), pages 20-25, January.
    3. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    4. Ilhan Chang & Jooyoung Im & Gye-Chun Cho, 2016. "Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering," Sustainability, MDPI, vol. 8(3), pages 1-23, March.
    5. Vinod Thomas & Ramón López, 2015. "Global Increase in Climate-Related Disasters," Working Papers id:7796, eSocialSciences.
    6. C. Haque, 2003. "Perspectives of Natural Disasters in East and South Asia, and the Pacific Island States: Socio-economic Correlates and Needs Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 465-483, July.
    7. M. Monirul Qader Mirza, 2003. "Climate change and extreme weather events: can developing countries adapt?," Climate Policy, Taylor & Francis Journals, vol. 3(3), pages 233-248, September.
    8. Wen-Chao Huang & Meng-Chia Weng & Ray-Kuo Chen, 2014. "Levee failure mechanisms during the extreme rainfall event: a case study in Southern Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1287-1307, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Byung-Hyun Ryu & Sojeong Lee & Ilhan Chang, 2020. "Pervious Pavement Blocks Made from Recycled Polyethylene Terephthalate (PET): Fabrication and Engineering Properties," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    3. Bonagiri Varsha & Arif Ali Baig Moghal & Ateekh Ur Rehman & Bhaskar C. S. Chittoori, 2023. "Shear, Consolidation Characteristics and Carbon Footprint Analysis of Clayey Soil Blended with Calcium Lignosulphonate and Granite Sand for Earthen Dam Application," Sustainability, MDPI, vol. 15(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    2. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    3. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    4. Sha Chen & Zhongkui Luo & Xubin Pan, 2013. "Natural disasters in China: 1900–2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1597-1605, December.
    5. Ward, Patrick & Shively, Gerald, 2012. "Vulnerability, Income Growth and Climate Change," World Development, Elsevier, vol. 40(5), pages 916-927.
    6. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," Working Papers halshs-00564946, HAL.
    7. Tol, Richard S. J. & Narita, Daiju & Anthoff, David, 2008. "Damage Costs of Climate Change through Intensification of Tropical Cyclone Activities: An Application of FUND," Papers WP259, Economic and Social Research Institute (ESRI).
    8. Ashu Tiwari & Archana Patro, 2018. "Memory, Risk Aversion, and Nonlife Insurance Consumption: Evidence from Emerging and Developing Markets," Risks, MDPI, vol. 6(4), pages 1-17, December.
    9. Eric Strobl, 2011. "The Economic Growth Impact of Hurricanes: Evidence from U.S. Coastal Counties," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 575-589, May.
    10. Horvath, Roman, 2021. "Natural catastrophes and financial depth: An empirical analysis," Journal of Financial Stability, Elsevier, vol. 53(C).
    11. Ramón E. López & Vinod Thomas & Pablo Troncoso, 2015. "Climate Change and Natural Disasters," Working Papers wp414, University of Chile, Department of Economics.
    12. Roman Horvath, 2020. "Natural Catastrophes and Financial Development: An Empirical Analysis," Working Papers IES 2020/14, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised May 2020.
    13. Chandra Bahinipati & Unmesh Patnaik, 2015. "The damages from climatic extremes in India: do disaster-specific and generic adaptation measures matter?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 157-177, January.
    14. Christopher Burgess & Michael Taylor & Tannecia Stephenson & Arpita Mandal & Leiska Powell, 2015. "A macro-scale flood risk model for Jamaica with impact of climate variability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 231-256, August.
    15. Cécile Couharde & Rémi Generoso, 2015. "Hydro-climatic thresholds and economic growth reversals in developing countries: an empirical investigation," EconomiX Working Papers 2015-26, University of Paris Nanterre, EconomiX.
    16. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    17. van Bergeijk, P.A.G. & Lazzaroni, S., 2013. "Macroeconomics of natural disasters," ISS Working Papers - General Series 50075, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    18. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    19. Alessandro Moro, 2021. "Can capital controls promote green investments in developing countries?," Temi di discussione (Economic working papers) 1348, Bank of Italy, Economic Research and International Relations Area.
    20. Antoci, Angelo & Galdi, Giulio & Russu, Paolo, 2022. "Environmental degradation and comparative advantage reversal," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2567-:d:245454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.