IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2481-d243597.html
   My bibliography  Save this article

Grey SWARA-FUCOM Weighting Method for Contractor Selection MCDM Problem: A Case Study of Floating Solar Panel Energy System Installation

Author

Listed:
  • Qingpeng Cao

    (School of Management, Northwestern Polytechnical University, Xi’an 710072, China)

  • Moses Olabhele Esangbedo

    (School of Management, Northwestern Polytechnical University, Xi’an 710072, China)

  • Sijun Bai

    (School of Management, Northwestern Polytechnical University, Xi’an 710072, China)

  • Caroline Olufunke Esangbedo

    (School of Management, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

Selection of the most appropriate contractor for the installation of solar panels is essential to maximizing the benefit of this renewable, sustainable energy source. Solar energy is one of the 100% renewable energy sources, but implementation may not be very simple and cost-effective. A key phase in the implementation of renewable energy is the evaluation of contractors for the installation of solar panels, which is addressed as a multi-criteria decision-making (MCDM) problem. A new hybrid method is proposed that combines the stepwise weight analysis ratio assessment (SWARA) and full consistent method (FUCOM) weights that are represented as grey numbers used with traditional grey relational analysis (GRA) and evaluation based on distance from average solution (EDAS) methods. The ranking of contractors by both methods is the same, which confirmed the results presented in this research. The use of the grey SWARA-FUCOM weighting method combined with the GRA and EDAS methods increased the decision-makers’ (DMs) confidence in awarding the installation of the solar panel energy system to the top-ranked contractor.

Suggested Citation

  • Qingpeng Cao & Moses Olabhele Esangbedo & Sijun Bai & Caroline Olufunke Esangbedo, 2019. "Grey SWARA-FUCOM Weighting Method for Contractor Selection MCDM Problem: A Case Study of Floating Solar Panel Energy System Installation," Energies, MDPI, vol. 12(13), pages 1-30, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2481-:d:243597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    2. Edyta Plebankiewicz, 2018. "Model of Predicting Cost Overrun in Construction Projects," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
    3. Sophia Akhtar & M Khurram Hashmi & Ishaq Ahmad & Rizwan Raza, 2018. "Advances and significance of solar reflectors in solar energy technology in Pakistan," Energy & Environment, , vol. 29(4), pages 435-455, June.
    4. Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
    5. Xiaowei An & Zhuofu Wang & Huimin Li & Jiyong Ding, 2018. "Project Delivery System Selection with Interval-Valued Intuitionistic Fuzzy Set Group Decision-Making Method," Group Decision and Negotiation, Springer, vol. 27(4), pages 689-707, August.
    6. Ruijun Liu & Hao Sun & Lu Zhang & Qianwei Zhuang & Lele Zhang & Xueyi Zhang & Ye Chen, 2018. "Low-Carbon Energy Planning: A Hybrid MCDM Method Combining DANP and VIKOR Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    7. Sherwani, A.F. & Usmani, J.A. & Varun, 2010. "Life cycle assessment of solar PV based electricity generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 540-544, January.
    8. Chun-Cheng Lin & Rou-Xuan He & Wan-Yu Liu, 2018. "Considering Multiple Factors to Forecast CO 2 Emissions: A Hybrid Multivariable Grey Forecasting and Genetic Programming Approach," Energies, MDPI, vol. 11(12), pages 1-25, December.
    9. F. Hutton Barron & Bruce E. Barrett, 1996. "Decision Quality Using Ranked Attribute Weights," Management Science, INFORMS, vol. 42(11), pages 1515-1523, November.
    10. Edwards, Ward & Barron, F. Hutton, 1994. "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement," Organizational Behavior and Human Decision Processes, Elsevier, vol. 60(3), pages 306-325, December.
    11. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    12. Tien-Chin Wang & Su-Yuan Tsai, 2018. "Solar Panel Supplier Selection for the Photovoltaic System Design by Using Fuzzy Multi-Criteria Decision Making (MCDM) Approaches," Energies, MDPI, vol. 11(8), pages 1-22, July.
    13. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    14. Shahin Mokhlesian, 2014. "How Do Contractors Select Suppliers for Greener Construction Projects? The Case of Three Swedish Companies," Sustainability, MDPI, vol. 6(7), pages 1-19, June.
    15. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    16. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    17. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    18. Chang, Byungik & Starcher, Ken, 2019. "Evaluation of wind and solar energy investments in Texas," Renewable Energy, Elsevier, vol. 132(C), pages 1348-1359.
    19. Tu, Tu & Rajarathnam, Gobinath P. & Vassallo, Anthony M., 2019. "Optimization of a stand-alone photovoltaic–wind–diesel–battery system with multi-layered demand scheduling," Renewable Energy, Elsevier, vol. 131(C), pages 333-347.
    20. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    21. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    22. Topcu, Ilker & Ülengin, Füsun & Kabak, Özgür & Isik, Mine & Unver, Berna & Onsel Ekici, Sule, 2019. "The evaluation of electricity generation resources: The case of Turkey," Energy, Elsevier, vol. 167(C), pages 417-427.
    23. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gülay Demir & Milanko Damjanović & Boško Matović & Radoje Vujadinović, 2022. "Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    2. Carlos Ramos & Zita Vale & Peter Palensky & Hiroaki Nishi, 2021. "Sustainable Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-3, October.
    3. Min-Yuan Cheng & Shu-Hua Yeh & Woei-Chyi Chang, 2020. "Multi-Criteria Decision Making of Contractor Selection in Mass Rapid Transit Station Development Using Bayesian Fuzzy Prospect Model," Sustainability, MDPI, vol. 12(11), pages 1-32, June.
    4. Hana Ayadi & Nadia Hamani & Lyes Kermad & Mounir Benaissa, 2021. "Novel Fuzzy Composite Indicators for Locating a Logistics Platform under Sustainability Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-37, April.
    5. Shrey Jain & Sunil Kumar Jauhar & Piyush, 2024. "A machine-learning-based framework for contractor selection and order allocation in public construction projects considering sustainability, risk, and safety," Annals of Operations Research, Springer, vol. 338(1), pages 225-267, July.
    6. Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
    7. Dragisa STANUJKIC & Darjan KARABASEVIC & Gabrijela POPOVIC & Cipriana SAVA, 2021. "Simplified Pivot Pairwise Relative Criteria Importance Assessment (Piprecia-S) Method," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 141-154, December.
    8. Adis Puška & Željko Stević & Dragan Pamučar, 2022. "Evaluation and selection of healthcare waste incinerators using extended sustainability criteria and multi-criteria analysis methods," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11195-11225, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    2. Kavitha, S. & Satheeshkumar, J. & Amudha, T., 2024. "Multi-label feature selection using q-rung orthopair hesitant fuzzy MCDM approach extended to CODAS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 148-173.
    3. Beynon, Malcolm J. & Wells, Peter, 2008. "The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis," Omega, Elsevier, vol. 36(3), pages 384-394, June.
    4. Roger Chapman Burk & Richard M. Nehring, 2023. "An Empirical Comparison of Rank-Based Surrogate Weights in Additive Multiattribute Decision Analysis," Decision Analysis, INFORMS, vol. 20(1), pages 55-72, March.
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    7. K. Koppiahraj & S. Bathrinath & V. G. Venkatesh & Venkatesh Mani & Yangyan Shi, 2023. "Optimal sustainability assessment method selection: a practitioner perspective," Annals of Operations Research, Springer, vol. 324(1), pages 629-662, May.
    8. Batur Sir, G. Didem & Çalışkan, Emre, 2019. "Assessment of development regions for financial support allocation with fuzzy decision making: A case of Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 161-169.
    9. Richard M. Anderson & Robert Clemen, 2013. "Toward an Improved Methodology to Construct and Reconcile Decision Analytic Preference Judgments," Decision Analysis, INFORMS, vol. 10(2), pages 121-134, June.
    10. Richard M. Anderson & Benjamin F. Hobbs, 2002. "Using a Bayesian Approach to Quantify Scale Compatibility Bias," Management Science, INFORMS, vol. 48(12), pages 1555-1568, December.
    11. Jessica Weber & Johann Köppel, 2022. "Can MCDA Serve Ex-Post to Indicate ‘Winners and Losers’ in Sustainability Dilemmas? A Case Study of Marine Spatial Planning in Germany," Energies, MDPI, vol. 15(20), pages 1-30, October.
    12. de Almeida Filho, Adiel T. & Clemente, Thárcylla R.N. & Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2018. "Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 264(2), pages 453-461.
    13. Jiménez, Antonio & Mateos, Alfonso & Sabio, Pilar, 2013. "Dominance intensity measure within fuzzy weight oriented MAUT: An application," Omega, Elsevier, vol. 41(2), pages 397-405.
    14. Kheybari, Siamak & Javdanmehr, Mahsa & Rezaie, Fariba Mahdi & Rezaei, Jafar, 2021. "Corn cultivation location selection for bioethanol production: An application of BWM and extended PROMETHEE II," Energy, Elsevier, vol. 228(C).
    15. Mališa Žižović & Dragan Pamučar & Goran Ćirović & Miodrag M. Žižović & Boža D. Miljković, 2020. "A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL)," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    16. Pierre L. Kunsch & Jean-Pierre Brans, 2019. "Visualising multi-criteria weight elicitation by multiple stakeholders in complex decision systems," Operational Research, Springer, vol. 19(4), pages 955-971, December.
    17. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    18. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    19. Ewa Roszkowska, 2020. "The extention rank ordering criteria weighting methods in fuzzy enviroment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 91-114.
    20. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2481-:d:243597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.