IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2347-d241064.html
   My bibliography  Save this article

Experimental Investigation on Performance Comparison of Solar Water Heating-Phase Change Material System and Solar Water Heating System

Author

Listed:
  • Liangliang Sun

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Nan Xiang

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Yanping Yuan

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Xiaoling Cao

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

Phase change material can be used as heat transfer fluid in the solar water heating system, which is the latest way to improve thermal efficiency. In this paper, graphene composite paraffin emulsion is used as heat transfer fluid in a solar water heating-phase change material (SWH-PCM) system. By comparing with the traditional solar water heating (SWH) system, the thermal performance characteristics of SWH-PCM system have been investigated experimentally. The SWH-PCM system has higher heat storage than the SWH system. The heat storage of SWH-PCM system and SWH system all increase with the increase of solar irradiance, while the thermal efficiency has the opposite trend. The flow rate has a greater influence on the thermal efficiency of SWH-PCM system than that of the SWH system. With the flow rate of 200 L/h, the thermal efficiency of SWH-PCM system is 14.21% higher than that of the SWH system. In summary, the SWH-PCM system is a promising solar water heating system with high heat storage and thermal efficiency.

Suggested Citation

  • Liangliang Sun & Nan Xiang & Yanping Yuan & Xiaoling Cao, 2019. "Experimental Investigation on Performance Comparison of Solar Water Heating-Phase Change Material System and Solar Water Heating System," Energies, MDPI, vol. 12(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2347-:d:241064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, F. & Chen, J. & Zhang, P., 2018. "Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes," Energy, Elsevier, vol. 149(C), pages 944-953.
    2. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
    3. Qiu, Zhongzhu & Ma, Xiaoli & Zhao, Xudong & Li, Peng & Ali, Samira, 2016. "Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system," Applied Energy, Elsevier, vol. 165(C), pages 260-271.
    4. Wang, Zhangyuan & Qiu, Feng & Yang, Wansheng & Zhao, Xudong, 2015. "Applications of solar water heating system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 645-652.
    5. Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
    6. Zhang, Zhaoli & Yuan, Yanping & Zhang, Nan & Sun, Qinrong & Cao, Xiaoling & Sun, Liangliang, 2017. "Thermal properties enforcement of carbonate ternary via lithium fluoride: A heat transfer fluid for concentrating solar power systems," Renewable Energy, Elsevier, vol. 111(C), pages 523-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An-Chi Wei & Wei-Jie Chang & Jyh-Rou Sze, 2020. "A Side-Absorption Concentrated Module with a Diffractive Optical Element as a Spectral-Beam-Splitter for a Hybrid-Collecting Solar System," Energies, MDPI, vol. 13(1), pages 1-14, January.
    2. Juan Zhao & Yifei Bai & Botao Zhou & Junmei Gao & Tianwei Qiang & Suqian Yan & Pei Liang, 2022. "Performance Analysis and Optimization of SHS Based on Solar Resources Distribution in Typical Cities in Cold Regions of China," Energies, MDPI, vol. 15(20), pages 1-13, October.
    3. Krzysztof Dutkowski & Marcin Kruzel & Tadeusz Bohdal, 2021. "Experimental Studies of the Influence of Microencapsulated Phase Change Material on Thermal Parameters of a Flat Liquid Solar Collector," Energies, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Juan & Yuan, Yanping & Haghighat, Fariborz & Lu, Jun & Feng, Guohui, 2019. "Investigation of energy performance and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a dynamic energy simulation model," Energy, Elsevier, vol. 172(C), pages 141-154.
    2. Cabaleiro, D. & Agresti, F. & Fedele, L. & Barison, S. & Hermida-Merino, C. & Losada-Barreiro, S. & Bobbo, S. & Piñeiro, M.M., 2022. "Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    4. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    5. Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
    6. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    7. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    8. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    11. Porteiro, Jacobo & Míguez, José Luis & Crespo, Bárbara & López González, Luis María & De Lara, José, 2015. "Experimental investigation of the thermal response of a thermal storage tank partially filled with different PCMs (phase change materials) to a steep demand," Energy, Elsevier, vol. 91(C), pages 202-214.
    12. Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
    13. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    14. Xu, Lingling & Pu, Liang & Angelo, Zarrella & Zhang, Derun & Dai, Minghao & Zhang, Shengqi, 2022. "An experimental investigation on performance of microencapsulated phase change material slurry in ground heat exchanger," Renewable Energy, Elsevier, vol. 198(C), pages 296-305.
    15. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.
    16. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    17. Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
    18. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    19. Manzolini, Giampaolo & Lucca, Gaia & Binotti, Marco & Lozza, Giovanni, 2021. "A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants," Renewable Energy, Elsevier, vol. 177(C), pages 807-822.
    20. Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2347-:d:241064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.