IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2174-d237927.html
   My bibliography  Save this article

Optimal Design of Heat-Integrated Water Allocation Networks

Author

Listed:
  • Maziar Kermani

    (École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Industrial Process and Energy Systems Engineering (IPESE) Group, 1951 Sion, Switzerland)

  • Ivan D. Kantor

    (École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Industrial Process and Energy Systems Engineering (IPESE) Group, 1951 Sion, Switzerland)

  • François Maréchal

    (École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Industrial Process and Energy Systems Engineering (IPESE) Group, 1951 Sion, Switzerland)

Abstract

Industrial operations consume energy and water in large quantities without accounting for potential economic and environmental burdens on future generations. Consumption of energy (mainly in the form of high pressure steam) and water (in the form of process water and cooling water) are essential to all processes and are strongly correlated, which requires development of systematic methodologies to address their interconnectivity. To this end, the subject of heat-integrated water allocation network design has received considerable attention within the research community in recent decades while further growth is expected due to imposed national and global regulations within the context of sustainable development. The overall mathematical model of these networks has a mixed-integer nonlinear programming formulation. As discussed in this work, proposed models in the literature have two main difficulties dealing with heat–water specificities, which result in complex formulations. These difficulties are addressed in this work through proposition of a novel nonlinear hyperstructure and a sequential solution strategy. The solution strategy is to solve three sub-problems sequentially and iteratively generate a set of potential solutions through the implementation of integer cut constraints. The novel mathematical approach also lends itself to an additional innovation for proposing multiple solutions balancing various performance indicators. This is exemplified with both a literature test case and an industrial-scale problem. The proposed solutions address a variety of performance indicators which guides decision-makers toward selecting the most appropriate configuration(s) among a large number of potential possibilities. Results exhibit that despite having a sequential solution strategy, better performance can be reached compared to previous approaches with the additional benefit of providing many potential solutions for further consideration by decision-makers to select the best case-specific solution.

Suggested Citation

  • Maziar Kermani & Ivan D. Kantor & François Maréchal, 2019. "Optimal Design of Heat-Integrated Water Allocation Networks," Energies, MDPI, vol. 12(11), pages 1-31, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2174-:d:237927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmetović, Elvis & Kravanja, Zdravko, 2013. "Simultaneous synthesis of process water and heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 236-250.
    2. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    3. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    4. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    5. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    2. Dong, Xuan & Zhang, Chijin & Peng, Xiaoyi & Chang, Chenglin & Liao, Zuwei & Yang, Yao & Sun, Jingyuan & Wang, Jingdai & Yang, Yongrong, 2022. "Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers," Energy, Elsevier, vol. 238(PC).
    3. Kamat, Shweta & Bandyopadhyay, Santanu, 2021. "A hybrid approach for heat integration in water conservation networks through non-isothermal mixing," Energy, Elsevier, vol. 233(C).
    4. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    5. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    2. Kamat, Shweta & Bandyopadhyay, Santanu, 2021. "A hybrid approach for heat integration in water conservation networks through non-isothermal mixing," Energy, Elsevier, vol. 233(C).
    3. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    4. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    5. Nidret Ibrić & Elvis Ahmetović & Andreja Nemet & Zdravko Kravanja & Ignacio E. Grossmann, 2022. "Synthesis of Heat-Integrated Water Networks Using a Modified Heat Exchanger Network Superstructure," Energies, MDPI, vol. 15(9), pages 1-23, April.
    6. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    7. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    8. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    9. Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
    10. Marian Piwowarski & Krzysztof Kosowski & Marcin Richert, 2023. "Organic Supercritical Thermodynamic Cycles with Isothermal Turbine," Energies, MDPI, vol. 16(12), pages 1-17, June.
    11. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    12. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    13. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    14. Zirngast, Klavdija & Kravanja, Zdravko & Novak Pintarič, Zorka, 2021. "An improved algorithm for synthesis of heat exchanger network with a large number of uncertain parameters," Energy, Elsevier, vol. 233(C).
    15. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    16. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    17. Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
    18. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    19. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2174-:d:237927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.