IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp236-250.html
   My bibliography  Save this article

Simultaneous synthesis of process water and heat exchanger networks

Author

Listed:
  • Ahmetović, Elvis
  • Kravanja, Zdravko

Abstract

This paper presents a novel superstructure and optimization model for the simultaneous synthesis of process water and heat exchanger networks. This superstructure combines the water network and heat exchanger network using interconnecting hot and cold streams. The water network has been extended for both direct and indirect heat exchanges. In addition, opportunities for heat integration between hot and cold streams, splitting and mixing of the freshwater and wastewater streams are incorporated within the superstructure. The proposed model is formulated as a non-convex MINLP (mixed-integer non-linear program), where the objective is to minimize the total annual costs of the network. A new convex hull formulation is presented for identifying the streams' roles within the network. Three examples involving single and multiple contaminant problems are presented in order to illustrate the applicability and capabilities of the proposed superstructure and model. In all cases the resultant networks exhibit lower total annual costs, whilst the freshwater and utilities consumption are the same as reported in the literature. In addition, novel designs for heat-integrated process water networks with smaller or same number of heat exchangers are presented.

Suggested Citation

  • Ahmetović, Elvis & Kravanja, Zdravko, 2013. "Simultaneous synthesis of process water and heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 236-250.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:236-250
    DOI: 10.1016/j.energy.2013.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213001941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leewongtanawit, Boondarik & Kim, Jin-Kuk, 2009. "Improving energy recovery for water minimisation," Energy, Elsevier, vol. 34(7), pages 880-893.
    2. Martínez-Patiño, Jesús & Picón-Núñez, Martín & Serra, Luis M. & Verda, Vittorio, 2011. "Design of water and energy networks using temperature–concentration diagrams," Energy, Elsevier, vol. 36(6), pages 3888-3896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    2. Nidret Ibrić & Elvis Ahmetović & Andreja Nemet & Zdravko Kravanja & Ignacio E. Grossmann, 2022. "Synthesis of Heat-Integrated Water Networks Using a Modified Heat Exchanger Network Superstructure," Energies, MDPI, vol. 15(9), pages 1-23, April.
    3. Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
    4. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2019. "Optimal Design of Heat-Integrated Water Allocation Networks," Energies, MDPI, vol. 12(11), pages 1-31, June.
    5. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko, 2014. "Optimal design for heat-integrated water-using and wastewater treatment networks," Applied Energy, Elsevier, vol. 135(C), pages 791-808.
    6. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    7. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    8. Dong, Xuan & Zhang, Chijin & Peng, Xiaoyi & Chang, Chenglin & Liao, Zuwei & Yang, Yao & Sun, Jingyuan & Wang, Jingdai & Yang, Yongrong, 2022. "Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers," Energy, Elsevier, vol. 238(PC).
    9. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    10. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    11. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2017. "Targeting of heat integrated water allocation networks by one-step MILP formulation," Applied Energy, Elsevier, vol. 197(C), pages 254-269.
    12. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    13. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    14. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2016. "Simultaneous optimization of heat-integrated water allocation networks," Applied Energy, Elsevier, vol. 169(C), pages 395-407.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    2. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    3. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    4. Kamat, Shweta & Bandyopadhyay, Santanu, 2021. "A hybrid approach for heat integration in water conservation networks through non-isothermal mixing," Energy, Elsevier, vol. 233(C).
    5. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    6. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2016. "Simultaneous optimization of heat-integrated water allocation networks," Applied Energy, Elsevier, vol. 169(C), pages 395-407.
    7. Dong, Xuan & Zhang, Chijin & Peng, Xiaoyi & Chang, Chenglin & Liao, Zuwei & Yang, Yao & Sun, Jingyuan & Wang, Jingdai & Yang, Yongrong, 2022. "Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers," Energy, Elsevier, vol. 238(PC).
    8. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2017. "Targeting of heat integrated water allocation networks by one-step MILP formulation," Applied Energy, Elsevier, vol. 197(C), pages 254-269.
    9. Panjeshahi, Mohammad Hassan & Gharaie, Mona & Ataei, Abtin, 2010. "Debottlenecking procedure of effluent thermal treatment system," Energy, Elsevier, vol. 35(12), pages 5202-5208.
    10. Toffolo, Andrea & Lazzaretto, Andrea & von Spakovsky, Michael R., 2012. "On the nature of the heat transfer feasibility constraint in the optimal synthesis/design of complex energy systems," Energy, Elsevier, vol. 41(1), pages 236-243.
    11. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko, 2014. "Optimal design for heat-integrated water-using and wastewater treatment networks," Applied Energy, Elsevier, vol. 135(C), pages 791-808.
    12. Yang, Minbo & Feng, Xiao & Chu, Khim Hoong & Liu, Guilian, 2014. "Graphical method for identifying the optimal purification process of hydrogen systems," Energy, Elsevier, vol. 73(C), pages 829-837.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:236-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.