IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221021642.html
   My bibliography  Save this article

Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers

Author

Listed:
  • Dong, Xuan
  • Zhang, Chijin
  • Peng, Xiaoyi
  • Chang, Chenglin
  • Liao, Zuwei
  • Yang, Yao
  • Sun, Jingyuan
  • Wang, Jingdai
  • Yang, Yongrong

Abstract

Heat integrated water allocation networks (HIWAN) can be recognized as a nexus between water and energy within the process industry. Water and energy are so tightly related in this kind of networks that water saving options may cause more energy consumption or vice versa. Various mathematical programming methods have been proposed to simultaneous optimize HIWAN. However, this problem is believed to be difficult to solve. Compared to the traditional HEN, the direct heat transfer of stream mixing is more flexible in this problem and the actual number of heat exchangers can be much smaller than the traditional HEN. This paper takes advantage of these two features to build up a novel superstructure to simultaneously design HIWAN. Stream splitters and mixers are considered for every water-using operations and heat exchange units, so that possibilities of stream mixing can be fully explored and there are more series and parallel modes between heat exchangers than that of stage-wise superstructure. The proposed model is solved under given different number of heat exchange units. A small to large iteration strategy is introduced to find the best solutions. Applying this proposed approach, the better results are obtained in large-scale problems compared with the previous papers.

Suggested Citation

  • Dong, Xuan & Zhang, Chijin & Peng, Xiaoyi & Chang, Chenglin & Liao, Zuwei & Yang, Yao & Sun, Jingyuan & Wang, Jingdai & Yang, Yongrong, 2022. "Simultaneous design of heat integrated water allocation networks considering all possible splitters and mixers," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021642
    DOI: 10.1016/j.energy.2021.121916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmetović, Elvis & Kravanja, Zdravko, 2013. "Simultaneous synthesis of process water and heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 236-250.
    2. Leewongtanawit, Boondarik & Kim, Jin-Kuk, 2009. "Improving energy recovery for water minimisation," Energy, Elsevier, vol. 34(7), pages 880-893.
    3. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2017. "Targeting of heat integrated water allocation networks by one-step MILP formulation," Applied Energy, Elsevier, vol. 197(C), pages 254-269.
    4. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2019. "Optimal Design of Heat-Integrated Water Allocation Networks," Energies, MDPI, vol. 12(11), pages 1-31, June.
    5. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nidret Ibrić & Elvis Ahmetović & Andreja Nemet & Zdravko Kravanja & Ignacio E. Grossmann, 2022. "Synthesis of Heat-Integrated Water Networks Using a Modified Heat Exchanger Network Superstructure," Energies, MDPI, vol. 15(9), pages 1-23, April.
    2. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    3. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Grossmann, Ignacio E., 2021. "Simultaneous optimisation of large-scale problems of heat-integrated water networks," Energy, Elsevier, vol. 235(C).
    2. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features," Energies, MDPI, vol. 11(5), pages 1-28, May.
    3. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    4. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    5. Kamat, Shweta & Bandyopadhyay, Santanu, 2021. "A hybrid approach for heat integration in water conservation networks through non-isothermal mixing," Energy, Elsevier, vol. 233(C).
    6. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2016. "Simultaneous optimization of heat-integrated water allocation networks," Applied Energy, Elsevier, vol. 169(C), pages 395-407.
    7. Hong, Xiaodong & Liao, Zuwei & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2017. "Targeting of heat integrated water allocation networks by one-step MILP formulation," Applied Energy, Elsevier, vol. 197(C), pages 254-269.
    8. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    9. Nidret Ibrić & Elvis Ahmetović & Andreja Nemet & Zdravko Kravanja & Ignacio E. Grossmann, 2022. "Synthesis of Heat-Integrated Water Networks Using a Modified Heat Exchanger Network Superstructure," Energies, MDPI, vol. 15(9), pages 1-23, April.
    10. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko & Grossmann, Ignacio E. & Maréchal, François & Čuček, Lidija & Kermani, Maziar, 2018. "Simultaneous optimisation and heat integration of evaporation systems including mechanical vapour recompression and background process," Energy, Elsevier, vol. 158(C), pages 1160-1191.
    11. Panjeshahi, Mohammad Hassan & Gharaie, Mona & Ataei, Abtin, 2010. "Debottlenecking procedure of effluent thermal treatment system," Energy, Elsevier, vol. 35(12), pages 5202-5208.
    12. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    13. Maziar Kermani & Ivan D. Kantor & François Maréchal, 2019. "Optimal Design of Heat-Integrated Water Allocation Networks," Energies, MDPI, vol. 12(11), pages 1-31, June.
    14. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    15. Ahmetović, Elvis & Kravanja, Zdravko, 2013. "Simultaneous synthesis of process water and heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 236-250.
    16. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    17. Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
    18. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    19. Ahmetović, Elvis & Ibrić, Nidret & Kravanja, Zdravko, 2014. "Optimal design for heat-integrated water-using and wastewater treatment networks," Applied Energy, Elsevier, vol. 135(C), pages 791-808.
    20. Laing, Harry & O'Malley, Chris & Browne, Anthony & Rutherford, Tony & Baines, Tony & Moore, Andrew & Black, Ken & Willis, Mark J., 2022. "Optimisation of energy usage and carbon emissions monitoring using MILP for an advanced anaerobic digester plant," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.