IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3546-d267704.html
   My bibliography  Save this article

A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks

Author

Listed:
  • Anna Gatzioura

    (Knowledge Engineering & Machine Learning Group at Intelligent Data Science and Artificial Intelligence Research Centre (KEMLG-@-IDEAI), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Catalonia, 08034 Barcelona, Spain
    Department of Computer Science, Universitat Politècnica de Catalunya BarcelonaTech (UPC), Catalonia, 08034 Barcelona, Spain)

  • Miquel Sànchez-Marrè

    (Knowledge Engineering & Machine Learning Group at Intelligent Data Science and Artificial Intelligence Research Centre (KEMLG-@-IDEAI), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Catalonia, 08034 Barcelona, Spain
    Department of Computer Science, Universitat Politècnica de Catalunya BarcelonaTech (UPC), Catalonia, 08034 Barcelona, Spain)

  • Karina Gibert

    (Knowledge Engineering & Machine Learning Group at Intelligent Data Science and Artificial Intelligence Research Centre (KEMLG-@-IDEAI), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Catalonia, 08034 Barcelona, Spain
    Department of Statistics and Operations Research, Universitat Politècnica de Catalunya BarcelonaTech (UPC), Catalonia, 08034 Barcelona, Spain)

Abstract

Recently, the need of improved resource trading has arisen due to resource limitations and energy optimization problems. Various platforms supporting resource exchange and waste reuse in industrial symbiotic networks are being developed. However, the actors participating in these networks still mainly act based on predefined patterns, without taking the possible alternatives into account, usually due to the difficulty of properly evaluating them. Therefore, incorporating intelligence into the platforms that these networks use, supporting the involved actors to automatically find resources able to cover their needs, is still of high importance both for the companies and the whole ecosystem. In this work, we present a hybrid recommender system to support users in properly identifying the symbiotic relationships that might provide them an improved performance. This recommender combines a graph-based model for resource similarities, while it follows the basic case-based reasoning processes to generate resource recommendations. Several criteria, apart from resource similarity, are taken into account to generate, each time, the list of the most suitable solutions. As highlighted through a use case scenario, the proposed system could play a key role in the emerging industrial symbiotic platforms, as the majority of them still do not incorporate automatic decision support mechanisms.

Suggested Citation

  • Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3546-:d:267704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    2. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    3. Walmsley, Timothy Gordon & Ong, Benjamin H.Y. & Klemeš, Jiří Jaromír & Tan, Raymond R. & Varbanov, Petar Sabev, 2019. "Circular Integration of processes, industries, and economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 507-515.
    4. Guido Capelleveen & Chintan Amrit & Devrim Murat Yazan, 2018. "A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis," Progress in IS, in: Benoît Otjacques & Patrik Hitzelberger & Stefan Naumann & Volker Wohlgemuth (ed.), From Science to Society, pages 155-169, Springer.
    5. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    6. Bistline, John E. & Rai, Varun, 2010. "The role of carbon capture technologies in greenhouse gas emissions-reduction models: A parametric study for the U.S. power sector," Energy Policy, Elsevier, vol. 38(2), pages 1177-1191, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Wurster & Cristina Fróes de Borja Reis, 2022. "Priority Products for Sustainability Information and Recommendation Software: Insights in the Context of the EU’s Action Plan Circular Economy," Sustainability, MDPI, vol. 14(19), pages 1-28, September.
    2. Konstantinos Demestichas & Emmanouil Daskalakis, 2020. "Information and Communication Technology Solutions for the Circular Economy," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. Sileryte, Rusne & Sabbe, Arnout & Bouzas, Vasileios & Meister, Kozmo & Wandl, Alexander & van Timmeren, Arjan, 2022. "European Waste Statistics data for a Circular Economy Monitor: opportunities and limitations from the Amsterdam Metropolitan Region," OSF Preprints da6f2, Center for Open Science.
    4. Wishal Naveed & Majsa Ammouriova & Noman Naveed & Angel A. Juan, 2022. "Circular Economy and Information Technologies: Identifying and Ranking the Factors of Successful Practices," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    5. Naudé, Wim & Bray, Amy & Lee, Celina, 2021. "Crowdsourcing Artificial Intelligence in Africa: Findings from a Machine Learning Contest," IZA Discussion Papers 14545, Institute of Labor Economics (IZA).
    6. Chris Davis & Graham Aid, 2022. "Machine learning‐assisted industrial symbiosis: Testing the ability of word vectors to estimate similarity for material substitutions," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 27-43, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    2. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    3. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    4. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    5. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    6. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    7. João Pinto & Rui Boavida-Dias & Henrique A. Matos & João Azevedo, 2022. "Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    8. Glen D. Corder & Artem Golev & Julian Fyfe & Sarah King, 2014. "The Status of Industrial Ecology in Australia: Barriers and Enablers," Resources, MDPI, vol. 3(2), pages 1-22, March.
    9. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    10. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability, Springer, vol. 2(2), pages 669-692, June.
    11. Yang Liu & Peng Cheng & Li Hu, 2022. "How do justice and top management beliefs matter in industrial symbiosis collaboration: An exploratory study from China," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 891-906, June.
    12. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    13. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    14. Fabio Iannone & Francesco Testa & Tiberio Daddi & Marco Frey & Giulia Casamento, 2019. "The role of Green Public Procurement in Circular Economy policies: An international comparison," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 149-170.
    15. Fabiana Liar Agudo & Bárbara Stolte Bezerra & José Alcides Gobbo Júnior, 2024. "An overview of Brazilian companies' readiness to implement industrial symbiosis," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1066-1080, February.
    16. Hélène Cervo & Stéphane Ogé & Amtul Samie Maqbool & Francisco Mendez Alva & Lindsay Lessard & Alexandre Bredimas & Jean-Henry Ferrasse & Greet Van Eetvelde, 2019. "A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    17. Sergio Barile & Clara Bassano & Raffaele D’Amore & Paolo Piciocchi & Marialuisa Saviano & Pietro Vito, 2021. "Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach ( vSa )," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    18. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    19. Anna Lütje & Volker Wohlgemuth, 2020. "Tracking Sustainability Targets with Quantitative Indicator Systems for Performance Measurement of Industrial Symbiosis in Industrial Parks," Administrative Sciences, MDPI, vol. 10(1), pages 1-15, January.
    20. Wadström, Christoffer & Johansson, Maria & Wallén, Magnus, 2021. "A framework for studying outcomes in industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3546-:d:267704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.