IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2108-d236460.html
   My bibliography  Save this article

Multi-DOF WEC Performance in Variable Bathymetry Regions Using a Hybrid 3D BEM and Optimization

Author

Listed:
  • Markos Bonovas

    (School of Naval Architecture and Marine Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Kostas Belibassakis

    (School of Naval Architecture and Marine Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Eugen Rusu

    (Department of Mechanical Engineering, University Dunarea de Jos of Galati, 800008 Galați, Romania)

Abstract

In the present work a hybrid boundary element method is used, in conjunction with a coupled mode model and perfectly matched layer model, for obtaining the solution of the propagation/diffraction/radiation problems of floating bodies in variable bathymetry regions. The implemented methodology is free of mild-slope assumptions and restrictions. The present work extends previous results concerning heaving floaters over a region of general bottom topography in the case of generally shaped wave energy converters (WECs) operating in multiple degrees of freedom. Numerical results concerning the details of the wave field and the power output are presented, and the effects of WEC shape on the optimization of power extraction are discussed. It is demonstrated that consideration of heave in combination with pitch oscillation modes leads to a possible increase of the WEC performance.

Suggested Citation

  • Markos Bonovas & Kostas Belibassakis & Eugen Rusu, 2019. "Multi-DOF WEC Performance in Variable Bathymetry Regions Using a Hybrid 3D BEM and Optimization," Energies, MDPI, vol. 12(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2108-:d:236460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gael Verao Fernández & Vasiliki Stratigaki & Peter Troch, 2019. "Irregular Wave Validation of a Coupling Methodology for Numerical Modelling of Near and Far Field Effects of Wave Energy Converter Arrays," Energies, MDPI, vol. 12(3), pages 1-19, February.
    2. Vincenzo Franzitta & Domenico Curto & Davide Rao & Alessia Viola, 2016. "Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy)," Energies, MDPI, vol. 9(10), pages 1-17, October.
    3. Philip Balitsky & Nicolas Quartier & Gael Verao Fernandez & Vasiliki Stratigaki & Peter Troch, 2018. "Analyzing the Near-Field Effects and the Power Production of an Array of Heaving Cylindrical WECs and OSWECs Using a Coupled Hydrodynamic-PTO Model," Energies, MDPI, vol. 11(12), pages 1-32, December.
    4. Gael Verao Fernandez & Philip Balitsky & Vasiliki Stratigaki & Peter Troch, 2018. "Coupling Methodology for Studying the Far Field Effects of Wave Energy Converter Arrays over a Varying Bathymetry," Energies, MDPI, vol. 11(11), pages 1-24, October.
    5. Kostas Belibassakis & Markos Bonovas & Eugen Rusu, 2018. "A Novel Method for Estimating Wave Energy Converter Performance in Variable Bathymetry Regions and Applications," Energies, MDPI, vol. 11(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    2. Alexandros Magkouris & Kostas Belibassakis & Eugen Rusu, 2021. "Hydrodynamic Analysis of Twin-Hull Structures Supporting Floating PV Systems in Offshore and Coastal Regions," Energies, MDPI, vol. 14(18), pages 1-19, September.
    3. Kostas Belibassakis & Alexandros Magkouris & Eugen Rusu, 2020. "A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry," Energies, MDPI, vol. 13(13), pages 1-24, July.
    4. Dimitrios N. Konispoliatis & Spyridon A. Mavrakos, 2020. "Wave Power Absorption by Arrays of Wave Energy Converters in Front of a Vertical Breakwater: A Theoretical Study," Energies, MDPI, vol. 13(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    2. Rijnsdorp, Dirk P. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model," Renewable Energy, Elsevier, vol. 150(C), pages 637-648.
    3. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H., 2024. "Adaptive systematic optimization of a multi-axis ocean wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Eugen Rusu & Vengatesan Venugopal, 2019. "Special Issue “Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind”," Energies, MDPI, vol. 12(1), pages 1-4, January.
    5. Quartier, Nicolas & Vervaet, Timothy & Fernandez, Gael Verao & Domínguez, José M. & Crespo, Alejandro J.C. & Stratigaki, Vasiliki & Troch, Peter, 2024. "High-fidelity numerical modelling of a two-WEC array with accurate implementation of the PTO system and control strategy using DualSPHysics," Energy, Elsevier, vol. 296(C).
    6. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    7. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    8. José Miguel Rodrigues, 2021. "A Procedure to Calculate First-Order Wave-Structure Interaction Loads in Wave Farms and Other Multi-Body Structures Subjected to Inhomogeneous Waves," Energies, MDPI, vol. 14(6), pages 1-21, March.
    9. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    10. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    11. Stratigaki, Vasiliki & Troch, Peter & Forehand, David, 2019. "A fundamental coupling methodology for modeling near-field and far-field wave effects of floating structures and wave energy devices," Renewable Energy, Elsevier, vol. 143(C), pages 1608-1627.
    12. Mohd Nasir Ayob & Valeria Castellucci & Johan Abrahamsson & Rafael Waters, 2019. "A Remotely Controlled Sea Level Compensation System for Wave Energy Converters," Energies, MDPI, vol. 12(10), pages 1-16, May.
    13. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    14. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    15. Alexandros Magkouris & Kostas Belibassakis & Eugen Rusu, 2021. "Hydrodynamic Analysis of Twin-Hull Structures Supporting Floating PV Systems in Offshore and Coastal Regions," Energies, MDPI, vol. 14(18), pages 1-19, September.
    16. Kostas Belibassakis & Alexandros Magkouris & Eugen Rusu, 2020. "A BEM for the Hydrodynamic Analysis of Oscillating Water Column Systems in Variable Bathymetry," Energies, MDPI, vol. 13(13), pages 1-24, July.
    17. Faedo, Nicolás & Peña-Sanchez, Yerai & Pasta, Edoardo & Papini, Guglielmo & Mosquera, Facundo D. & Ferri, Francesco, 2023. "SWELL: An open-access experimental dataset for arrays of wave energy conversion systems," Renewable Energy, Elsevier, vol. 212(C), pages 699-716.
    18. Carlo Lo Re & Giorgio Manno & Giuseppe Ciraolo & Giovanni Besio, 2019. "Wave Energy Assessment around the Aegadian Islands (Sicily)," Energies, MDPI, vol. 12(3), pages 1-20, January.
    19. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Alessia Viola, 2016. "The Desalination Process Driven by Wave Energy: A Challenge for the Future," Energies, MDPI, vol. 9(12), pages 1-16, December.
    20. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2108-:d:236460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.