IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2061-d235492.html
   My bibliography  Save this article

Investigation of Two-Phase Flow in a Hydrophobic Fuel-Cell Micro-Channel

Author

Listed:
  • N. Ibrahim-Rassoul

    (Faculty of Physics Laboratory of Theoretical and Applied Fluid Mechanics, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Alger 16111, Algeria)

  • E.-K. Si-Ahmed

    (Faculty of Physics Laboratory of Theoretical and Applied Fluid Mechanics, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Alger 16111, Algeria
    GEPEA, CNRS, ONIRIS, Nantes University, UMR 6144, 37, Bd de l’Université, BP 406, 44602 Saint-Nazaire, France)

  • A. Serir

    (Faculty of Electronics Laboratory Image Processing and Radiation, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Alger 16111, Algeria)

  • A. Kessi

    (Faculty of Mathematics USTHB, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Alger 16111, Algeria)

  • J. Legrand

    (GEPEA, CNRS, ONIRIS, Nantes University, UMR 6144, 37, Bd de l’Université, BP 406, 44602 Saint-Nazaire, France)

  • N. Djilali

    (Institute for Integrated Energy Systems & Department Mechanical Engineering, University of Victoria, Victoria, BC V8W 3P6, Canada)

Abstract

This paper presents a quantitative visualization study and a theoretical analysis of two-phase flow relevant to polymer electrolyte membrane fuel cells (PEMFCs) in which liquid water management is critical to performance. Experiments were conducted in an air-flow microchannel with a hydrophobic surface and a side pore through which water was injected to mimic the cathode of a PEMFC. Four distinct flow patterns were identified: liquid bridge (plug), slug/plug, film flow, and water droplet flow under small Weber number conditions. Liquid bridges first evolve with quasi-static properties while remaining pinned; after reaching a critical volume, bridges depart from axisymmetry, block the flow channel, and exhibit lateral oscillations. A model that accounts for capillarity at low Bond number is proposed and shown to successfully predict the morphology, critical liquid volume and evolution of the liquid bridge, including deformation and complete blockage under specific conditions. The generality of the model is also illustrated for flow conditions encountered in the manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The experiments provide a database for validation of theoretical and computational methods.

Suggested Citation

  • N. Ibrahim-Rassoul & E.-K. Si-Ahmed & A. Serir & A. Kessi & J. Legrand & N. Djilali, 2019. "Investigation of Two-Phase Flow in a Hydrophobic Fuel-Cell Micro-Channel," Energies, MDPI, vol. 12(11), pages 1-32, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2061-:d:235492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Djilali, N., 2007. "Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities," Energy, Elsevier, vol. 32(4), pages 269-280.
    2. Jun Shen & Zhichun Liu & Fan Liu & Wei Liu, 2018. "Numerical Simulation of Water Transport in a Proton Exchange Membrane Fuel Cell Flow Channel," Energies, MDPI, vol. 11(7), pages 1-23, July.
    3. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Rafałko & Iwona Zaborowska & Hubert Grzybowski & Romuald Mosdorf, 2020. "Boiling Synchronization in Two Parallel Minichannels—Image Analysis," Energies, MDPI, vol. 13(6), pages 1-9, March.
    2. Yin, Yan & Li, Yu & Qin, Yanzhou & Li, Mengjie & Liu, Guokun & Zhang, Junfeng & Zhao, Jian, 2022. "Ex-situ experimental study on dynamic behaviors and detachment characteristics of liquid water in a transparent channel of PEMFC," Renewable Energy, Elsevier, vol. 187(C), pages 1037-1049.
    3. Ikechukwu S. Anyanwu & Yuze Hou & Wenmiao Chen & Fengwen Pan & Qing Du & Jin Xuan & Kui Jiao, 2019. "Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC," Energies, MDPI, vol. 12(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    2. Ismail, M.S. & Ingham, D.B. & Ma, L. & Hughes, K.J. & Pourkashanian, M., 2017. "Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework," Energy, Elsevier, vol. 122(C), pages 420-430.
    3. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    4. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    5. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    6. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    8. Mengying Fan & Fengyun Duan & Tianqi Wang & Mingming Kang & Bin Zeng & Jian Xu & Ryan Anderson & Wei Du & Lifeng Zhang, 2021. "Effect of Pore Shape and Spacing on Water Droplet Dynamics in Flow Channels of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(5), pages 1-18, February.
    9. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    10. Yang, H.N. & Lee, W.H. & Choi, B.S. & Ko, Y.D. & Yi, S.C. & Kim, W.J., 2017. "Self-humidifying Pt-C/Pt-TiO2 dual-catalyst electrode membrane assembly for proton-exchange membrane fuel cells," Energy, Elsevier, vol. 120(C), pages 12-19.
    11. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    12. San Martin, J.I. & Zamora, I. & San Martin, J.J. & Aperribay, V. & Torres, E. & Eguia, P., 2010. "Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells," Energy, Elsevier, vol. 35(5), pages 1898-1907.
    13. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    14. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    15. Iranzo, Alfredo & Boillat, Pierre & Oberholzer, Pierre & Guerra, José, 2014. "A novel approach coupling neutron imaging and numerical modelling for the analysis of the impact of water on fuel cell performance," Energy, Elsevier, vol. 68(C), pages 971-981.
    16. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    17. Jin Hyun Kim & Woo Tae Kim, 2018. "Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections," Energies, MDPI, vol. 11(6), pages 1-18, May.
    18. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    19. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    20. Deng, Huichao & Zhang, Yufeng & Zheng, Xue & Li, Yang & Zhang, Xuelin & Liu, Xiaowei, 2015. "A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol," Energy, Elsevier, vol. 82(C), pages 236-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2061-:d:235492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.