IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1250-d505429.html
   My bibliography  Save this article

Effect of Pore Shape and Spacing on Water Droplet Dynamics in Flow Channels of Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Mengying Fan

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Fengyun Duan

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Tianqi Wang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Mingming Kang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Bin Zeng

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Jian Xu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Ryan Anderson

    (Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA)

  • Wei Du

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)

  • Lifeng Zhang

    (Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada)

Abstract

Effective water management increases the performance of proton exchange membrane fuel cells (PEMFCs). The liquid droplet movement mechanism in the cathode channel, the gas-liquid two-phase flow pattern, and the resulting pressure drop are important to water management in PEMFCs. This work employed computational fluid dynamics (CFD) with a volume of fluid (VOF) to simulate the effects of two operating parameters on the liquid water flow in the cathode flow channel: Gas diffusion layer (GDL) pore shape for water emergence, and distance between GDL pores. From seven pore shapes considered in this work, the longer the windward side of the micropore is, the larger the droplet can grow, and the duration of droplet growth movement will be longer. In the cases of two micropores for water introduction, a critical pore distance is noted for whether two droplets coalesce. When the micropore distance was shorter than this critical value, different droplets coalesce after the droplets grew to a certain extent. These results indicate that the pore shape and the distance between pores should be accounted for in future simulations of PEMFC droplet dynamics and that these parameters need to be optimized when designing novel GDL structures.

Suggested Citation

  • Mengying Fan & Fengyun Duan & Tianqi Wang & Mingming Kang & Bin Zeng & Jian Xu & Ryan Anderson & Wei Du & Lifeng Zhang, 2021. "Effect of Pore Shape and Spacing on Water Droplet Dynamics in Flow Channels of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1250-:d:505429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanzhou Qin & Xuefeng Wang & Rouxian Chen & Xiang Shangguan, 2018. "Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinchuan Niu & Minglin Li & Lianfeng Lai, 2022. "Effect of In-Pore Wettability on Mass Transfer Performance of Fuel Cell Gas Diffusion Layer," Energies, MDPI, vol. 15(10), pages 1-12, May.
    2. Marco Mariani & Andrea Basso Peressut & Saverio Latorrata & Riccardo Balzarotti & Maurizio Sansotera & Giovanni Dotelli, 2021. "The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 14(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Hyun Kim & Woo Tae Kim, 2018. "Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections," Energies, MDPI, vol. 11(6), pages 1-18, May.
    2. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    3. N. Ibrahim-Rassoul & E.-K. Si-Ahmed & A. Serir & A. Kessi & J. Legrand & N. Djilali, 2019. "Investigation of Two-Phase Flow in a Hydrophobic Fuel-Cell Micro-Channel," Energies, MDPI, vol. 12(11), pages 1-32, May.
    4. Wang, Yulin & Wang, Xiaodong & Wang, Xiaoai & Liu, Tao & Zhu, Tingting & Liu, Shengchun & Qin, Yanzhou, 2021. "Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution," Renewable Energy, Elsevier, vol. 178(C), pages 864-874.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1250-:d:505429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.