IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1881-d231953.html
   My bibliography  Save this article

Aeroelastic Analysis of a Coplanar Twin-Rotor Wind Turbine

Author

Listed:
  • Amr Ismaiel

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
    Faculty of Engineering and Technology, Future University in Egypt (FUE), 5th Settlement, New Cairo 11835, Egypt)

  • Shigeo Yoshida

    (Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan)

Abstract

Multi-rotor system (MRS) wind turbines can be a competitive alternative to large-scale wind turbines. In order to address the structural behavior of the turbine tower, an in-house aeroelastic tool has been developed to study the dynamic responses of a 2xNREL 5MW twin-rotor configuration wind turbine. The developed tool has been verified by comparing the results of a single-rotor configuration to a FAST analysis for the same simulation conditions. Steady flow and turbulent load cases were investigated for the twin-rotor configuration. Results of the simulations have shown that elasticity of the tower should be considered for studying tower dynamic responses. The tower loads, and deformations are not straightforward with the number of rotors added. For an equivalent tower, an additional rotor will increase the tower-top deflection, and the tower-base bending moment both in the fore-aft direction will be more than doubled. The tower torsional stiffness becomes a crucial factor in the case of a twin-rotor tower to avoid a severe torsional deflection. Tower natural frequencies are dominant over the flow conditions in regards to the loads and deflections.

Suggested Citation

  • Amr Ismaiel & Shigeo Yoshida, 2019. "Aeroelastic Analysis of a Coplanar Twin-Rotor Wind Turbine," Energies, MDPI, vol. 12(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1881-:d:231953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Göltenbott, Uli & Ohya, Yuji & Yoshida, Shigeo & Jamieson, Peter, 2017. "Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems," Renewable Energy, Elsevier, vol. 112(C), pages 25-34.
    2. Shigeo Yoshida & Uli Goltenbott & Yuji Ohya & Peter Jamieson, 2016. "Coherence Effects on the Power and Tower Loads of a 7 × 2 MW Multi-Rotor Wind Turbine System," Energies, MDPI, vol. 9(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Zhang & Xin Cai & Shifa Lin & Yazhou Wang & Xingwen Guo, 2022. "CFD Simulation of Co-Planar Multi-Rotor Wind Turbine Aerodynamic Performance Based on ALM Method," Energies, MDPI, vol. 15(17), pages 1-13, September.
    2. Ralf Stetter, 2020. "Approaches for Modelling the Physical Behavior of Technical Systems on the Example of Wind Turbines," Energies, MDPI, vol. 13(8), pages 1-27, April.
    3. Yewen Chen & Shuni Zhou & Chang Cai & Weilong Wang & Yuheng Hao & Teng Zhou & Xinbao Wang & Qingan Li, 2023. "Study on the Rotation Effect on the Modal Performance of Wind Turbine Blades," Energies, MDPI, vol. 16(3), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Zhang & Xin Cai & Shifa Lin & Yazhou Wang & Xingwen Guo, 2022. "CFD Simulation of Co-Planar Multi-Rotor Wind Turbine Aerodynamic Performance Based on ALM Method," Energies, MDPI, vol. 15(17), pages 1-13, September.
    2. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Ye, Jianjun & Cheng, Yanglin & Xie, Junlong & Huang, Xiaohong & Zhang, Yuan & Hu, Siyao & Salem, Shehab & Wu, Jiejun, 2020. "Effects of divergent angle on the flow behaviors in low speed wind accelerating ducts," Renewable Energy, Elsevier, vol. 152(C), pages 1292-1301.
    4. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    5. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    6. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    7. Jiang, Yichen & Liu, Shijie & Zao, Peidong & Yu, Yanwei & Zou, Li & Liu, Liqin & Li, Jiawen, 2022. "Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability," Applied Energy, Elsevier, vol. 309(C).
    8. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1881-:d:231953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.