IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v299y2001i1p344-350.html
   My bibliography  Save this article

Modeling electricity loads in California: a continuous-time approach

Author

Listed:
  • Weron, R.
  • Kozłowska, B.
  • Nowicka-Zagrajek, J.

Abstract

In this paper we address the issue of modeling electricity loads and prices with diffusion processes. More specifically, we study models which belong to the class of generalized Ornstein–Uhlenbeck processes. After comparing properties of simulated paths with those of deseasonalized data from the California power market and performing out-of-sample forecasts we conclude that, despite certain advantages, the analyzed continuous-time processes are not adequate models of electricity load and price dynamics.

Suggested Citation

  • Weron, R. & Kozłowska, B. & Nowicka-Zagrajek, J., 2001. "Modeling electricity loads in California: a continuous-time approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 344-350.
  • Handle: RePEc:eee:phsmap:v:299:y:2001:i:1:p:344-350
    DOI: 10.1016/S0378-4371(01)00315-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101003156
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00315-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    2. Rafal Weron, 2005. "Market price of risk implied by Asian-style electricity options," Econometrics 0502003, University Library of Munich, Germany.
    3. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, University Library of Munich, Germany.
    4. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    5. Hurtado Moreno, Laura & Quintero Montoya, Olga Lucía & García Rendón, John Jairo, 2014. "Estimación del precio de oferta de la energía eléctrica en Colombia mediante inteligencia artificial || Estimating the Spot Market Price Bid in Colombian Electricity Market by Using Artificial Intelli," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 18(1), pages 54-87, December.
    6. Palzer, Andreas & Westner, Günther & Madlener, Reinhard, 2013. "Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants," Energy Policy, Elsevier, vol. 59(C), pages 143-160.
    7. Rafal Weron, 2001. "Measuring long-range dependence in electricity prices," Papers cond-mat/0103621, arXiv.org.
    8. Montero, José M. & García-Centeno, Maria C. & Fernández-Avilés, Gema, 2011. "Modelling the Volatility of the Spanish Wholesale Electricity Spot Market. Asymmetric GARCH Models vs. Threshold ARSV model/Modelización de la volatilidad en el mercado eléctrico español. Modelos GARC," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 29, pages 597-616, Agosto.
    9. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    10. David Kozak & Scott Holladay & Gregory E. Fasshauer, 2019. "Intraday Load Forecasts with Uncertainty," Energies, MDPI, vol. 12(10), pages 1-26, May.
    11. Joanna Nowicka-Zagrajek & Rafal Weron, 2002. "Modeling electricity loads in California: ARMA models with hyperbolic noise," HSC Research Reports HSC/02/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:299:y:2001:i:1:p:344-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.