IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p136-d711220.html
   My bibliography  Save this article

Standardizing Performance Metrics for Building-Level Electrical Distribution Systems

Author

Listed:
  • Moazzam Nazir

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Omkar Ghatpande

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Willy Bernal Heredia

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Cameron Wierzbanowski

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Daniel Gerber

    (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

  • Avijit Saha

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

Abstract

Building-level electrical distribution systems comprise a myriad of current-carrying equipment, conversion devices, and protection devices that deliver power from the utility or local distributed energy resources to end-use building loads. Electric power has traditionally been generated, transmitted, and distributed in alternating current (AC). However, the last decade has seen a significant increase in the integration of native direct current (DC) equipment that has elevated the importance of DC distribution systems. Numerous studies have comparatively examined the performance of various electrical distribution systems in buildings but have failed to achieve uniform conclusions, primarily because of a lack of consistent and analogous performance evaluation methods. This paper aims to fill this gap by providing a standard set of metrics and measurement boundaries to consistently evaluate the performance of AC, DC, or hybrid AC/DC electrical distribution systems. The efficacy of the proposed approach is evaluated on a representative medium-sized commercial office building model with AC distribution and an equivalent hybrid AC/DC and DC distribution model, wherein the AC distribution model is concluded to be the most efficient. The simulation results show variation in computed metrics with different selected boundaries that verify the effectiveness of the proposed approach in ensuring consistent computation of the performance of building-level electrical distribution systems. This paper provides an initial set of guidelines for building energy system stakeholders to adopt appropriate solutions, thus leading to more efficient energy systems.

Suggested Citation

  • Moazzam Nazir & Omkar Ghatpande & Willy Bernal Heredia & Cameron Wierzbanowski & Daniel Gerber & Avijit Saha, 2021. "Standardizing Performance Metrics for Building-Level Electrical Distribution Systems," Energies, MDPI, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:136-:d:711220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venkata Anand Prabhala & Bhanu Prashant Baddipadiga & Poria Fajri & Mehdi Ferdowsi, 2018. "An Overview of Direct Current Distribution System Architectures & Benefits," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    2. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    3. Chunwang Xiaogeng LiRen & Xiaojun Ma & Fuxiang Chen & Zhicheng Yang & Sandeep Panchal, 2022. "Simulation and inspection of fault arc in building energy-saving distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 331-339, March.
    4. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    5. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    6. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    8. Jianjia He & Thi Hoai Thuong Mai, 2021. "The Circular Economy: A Study on the Use of Airbnb for Sustainable Coastal Development in the Vietnam Mekong Delta," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    9. Meshari Alshammari & Maeve Duffy, 2021. "Feasibility Analysis of a DC Distribution System for a 6 kW Photovoltaic Installation in Ireland," Energies, MDPI, vol. 14(19), pages 1-17, October.
    10. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    11. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    12. Eskander, Monica M. & Silva, Carlos A., 2023. "Techno-economic and environmental comparative analysis for DC microgrids in households: Portuguese and French household case study," Applied Energy, Elsevier, vol. 349(C).
    13. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    14. Andrea Mariscotti & Leonardo Sandrolini & Mattia Simonazzi, 2022. "Supraharmonic Emissions from DC Grid Connected Wireless Power Transfer Converters," Energies, MDPI, vol. 15(14), pages 1-21, July.
    15. Young-Maan Cho & Hyun-Jong Park & Jae-Jun Lee & Kun-A Lee, 2022. "Analysis of Characteristics of Low Voltage Circuit Breaker by External Magnetic Field," Energies, MDPI, vol. 15(21), pages 1-15, November.
    16. Boning Wu & Xuesong Zhou & Youjie Ma, 2020. "Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy," Energies, MDPI, vol. 13(6), pages 1-21, March.
    17. Avpreet Othee & James Cale & Arthur Santos & Stephen Frank & Daniel Zimmerle & Omkar Ghatpande & Gerald Duggan & Daniel Gerber, 2023. "A Modeling Toolkit for Comparing AC and DC Electrical Distribution Efficiency in Buildings," Energies, MDPI, vol. 16(7), pages 1-46, March.
    18. Ahmed Y. Farag & Tarek Younis & Davide Biadene & Paolo Mattavelli, 2023. "AC Grid–DC Microgrid Coupling with High-Performance Three-Phase Single-Stage Bidirectional Converters," Energies, MDPI, vol. 16(17), pages 1-16, August.
    19. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    20. Patrik Ollas & Torbjörn Thiringer & Mattias Persson, 2024. "Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design," Energies, MDPI, vol. 17(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:136-:d:711220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.