IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2133-d164017.html
   My bibliography  Save this article

Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries

Author

Listed:
  • Vaclav Knap

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Daniel J. Auger

    (School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK)

  • Karsten Propp

    (School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK)

  • Abbas Fotouhi

    (School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK)

  • Daniel-Ioan Stroe

    (Department of Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Lithium-sulfur (Li-S) batteries are an emerging energy storage technology with higher performance than lithium-ion batteries in terms of specific capacity and energy density. However, several scientific and technological gaps need to be filled before Li-S batteries will penetrate the market at a large scale. One such gap, which is tackled in this paper, is represented by the estimation of state-of-health (SOH). Li-S batteries exhibit a complex behaviour due to their inherent mechanisms, which requires a special tailoring of the already literature-available state-of-charge (SOC) and SOH estimation algorithms. In this work, a model of SOH based on capacity fade and power fade has been proposed and incorporated in a state estimator using dual extended Kalman filters has been used to simultaneously estimate Li-S SOC and SOH. The dual extended Kalman filter’s internal estimates of equivalent circuit network parameters have also been used to the estimate maximum available power of the battery at any specified instant. The proposed estimators have been successfully applied to both fresh and aged Li-S pouch cells, showing that they can accurately track accurately the battery SOC, SOH, and power, providing that initial conditions are suitable. However, the estimation of the Li-S battery cells’ capacity fade is shown to be more complex, because the practical available capacity varies highly with the applied current rates and the dynamics of the mission profile.

Suggested Citation

  • Vaclav Knap & Daniel J. Auger & Karsten Propp & Abbas Fotouhi & Daniel-Ioan Stroe, 2018. "Concurrent Real-Time Estimation of State of Health and Maximum Available Power in Lithium-Sulfur Batteries," Energies, MDPI, vol. 11(8), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2133-:d:164017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    2. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    3. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.
    4. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    5. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    6. Wang, Chengshan & Liu, Yixin & Li, Xialin & Guo, Li & Qiao, Lei & Lu, Hai, 2016. "Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system," Energy, Elsevier, vol. 97(C), pages 90-104.
    7. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    8. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    9. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    10. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    11. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    12. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    13. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    14. Zhang, Cetengfei & Zhou, Quan & Hua, Min & Xu, Hongming & Bassett, Mike & Zhang, Fanggang, 2023. "Cuboid equivalent consumption minimization strategy for energy management of multi-mode plug-in hybrid vehicles considering diverse time scale objectives," Applied Energy, Elsevier, vol. 351(C).
    15. Tang, Aihua & Wu, Xinyu & Xu, Tingting & Hu, Yuanzhi & Long, Shengwen & Yu, Quanqing, 2024. "State of health estimation based on inconsistent evolution for lithium-ion battery module," Energy, Elsevier, vol. 286(C).
    16. Zhiwei He & Mingyu Gao & Guojin Ma & Yuanyuan Liu & Lijun Tang, 2016. "Battery Grouping with Time Series Clustering Based on Affinity Propagation," Energies, MDPI, vol. 9(7), pages 1-11, July.
    17. Cui, Yingzhi & Zuo, Pengjian & Du, Chunyu & Gao, Yunzhi & Yang, Jie & Cheng, Xinqun & Ma, Yulin & Yin, Geping, 2018. "State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method," Energy, Elsevier, vol. 144(C), pages 647-656.
    18. Muhammad Sheraz & Woojin Choi, 2023. "A Novel Technique for Fast Ohmic Resistance Measurement to Evaluate the Aging of Lithium-Ion xEVs Batteries," Energies, MDPI, vol. 16(3), pages 1-15, February.
    19. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
    20. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2133-:d:164017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.