IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp505-520.html
   My bibliography  Save this article

A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle

Author

Listed:
  • Esfandyari, M.J.
  • Esfahanian, V.
  • Hairi Yazdi, M.R.
  • Nehzati, H.
  • Shekoofa, O.

Abstract

Battery State of Power (SoP) estimation is one of the most crucial tasks of the battery management system in electric and hybrid electric vehicles. The inevitable error in estimates of battery State of Charge (SoC) and State of Health (SoH) is a cause of inaccuracies towards estimating the SoP for an aged battery. To overcome this, the present study aims to propose a new approach for predicting an aged cell SoP in which no a priori knowledge of battery SoH is required and the estimation method is robust to inaccuracies of SoC estimates. Accordingly, a combined reference mode of constant-current and constant-voltage is utilized to estimate fresh cell SoP which is then adapted to various aging states using a model-less control system. The control system, which belongs to a class of fuzzy logic-based controllers, benefits form a closed-loop framework leading to a more reliable and accurate SoP estimate. For verification, an experimental setup comprised of fresh and aged LiFePO4 cell samples is designed and the extracted data are utilized in a Model-in-the-Loop simulation for a hybrid electric vehicle. The results demonstrate the improved accuracy and robustness of SoP estimation while achieving a guaranteed safe operation of battery.

Suggested Citation

  • Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:505-520
    DOI: 10.1016/j.energy.2019.03.176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219305961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burgos-Mellado, Claudio & Orchard, Marcos E. & Kazerani, Mehrdad & Cárdenas, Roberto & Sáez, Doris, 2016. "Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries," Applied Energy, Elsevier, vol. 161(C), pages 349-363.
    2. Jiang, Jiuchun & Liu, Sijia & Ma, Zeyu & Wang, Le Yi & Wu, Ke, 2016. "Butler-Volmer equation-based model and its implementation on state of power prediction of high-power lithium titanate batteries considering temperature effects," Energy, Elsevier, vol. 117(P1), pages 58-72.
    3. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    4. Sun, Fengchun & Xiong, Rui & He, Hongwen & Li, Weiqing & Aussems, Johan Eric Emmanuel, 2012. "Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries," Applied Energy, Elsevier, vol. 96(C), pages 378-386.
    5. Zhang, Xu & Wang, Yujie & Wu, Ji & Chen, Zonghai, 2018. "A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter," Applied Energy, Elsevier, vol. 216(C), pages 442-451.
    6. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    7. Berecibar, Maitane & Garmendia, Maitane & Gandiaga, Iñigo & Crego, Jon & Villarreal, Igor, 2016. "State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application," Energy, Elsevier, vol. 103(C), pages 784-796.
    8. Zheng, Fangdan & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Pecht, Michael, 2016. "Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles," Energy, Elsevier, vol. 113(C), pages 64-75.
    9. Zheng, Linfeng & Zhang, Lei & Zhu, Jianguo & Wang, Guoxiu & Jiang, Jiuchun, 2016. "Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model," Applied Energy, Elsevier, vol. 180(C), pages 424-434.
    10. Soares, F.J. & Carvalho, L. & Costa, I.C. & Iria, J.P. & Bodet, J.-M. & Jacinto, G. & Lecocq, A. & Roessner, J. & Caillard, B. & Salvi, O., 2015. "The STABALID project: Risk analysis of stationary Li-ion batteries for power system applications," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 142-175.
    11. Hu, Minghui & Li, Yunxiao & Li, Shuxian & Fu, Chunyun & Qin, Datong & Li, Zonghua, 2018. "Lithium-ion battery modeling and parameter identification based on fractional theory," Energy, Elsevier, vol. 165(PB), pages 153-163.
    12. Suri, Girish & Onori, Simona, 2016. "A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries," Energy, Elsevier, vol. 96(C), pages 644-653.
    13. Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
    14. Pei, Lei & Zhu, Chunbo & Wang, Tiansi & Lu, Rengui & Chan, C.C., 2014. "Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 66(C), pages 766-778.
    15. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingzheng Fan & Bingfeng Zu & Jianwei Zhou & Zhen Wang & Haopeng Wang, 2021. "Adaptive Mode Selection Strategy for Series-Parallel Hybrid Electric Vehicles Based on Variable Power Reserve," Energies, MDPI, vol. 14(11), pages 1-18, May.
    2. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    3. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
    4. Abraham Alem Kebede & Md Sazzad Hosen & Theodoros Kalogiannis & Henok Ayele Behabtu & Towfik Jemal & Joeri Van Mierlo & Thierry Coosemans & Maitane Berecibar, 2022. "Model Development for State-of-Power Estimation of Large-Capacity Nickel-Manganese-Cobalt Oxide-Based Lithium-Ion Cell Validated Using a Real-Life Profile," Energies, MDPI, vol. 15(18), pages 1-15, September.
    5. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    6. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost," Energies, MDPI, vol. 15(16), pages 1-18, August.
    7. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    8. Nguyễn, Bảo-Huy & Vo-Duy, Thanh & Henggeler Antunes, Carlos & Trovão, João Pedro F., 2021. "Multi-objective benchmark for energy management of dual-source electric vehicles: An optimal control approach," Energy, Elsevier, vol. 223(C).
    9. Shanshan Guo & Zhiqiang Han & Jun Wei & Shenggang Guo & Liang Ma, 2022. "A Novel DC-AC Fast Charging Technology for Lithium-Ion Power Battery at Low-Temperatures," Sustainability, MDPI, vol. 14(11), pages 1-10, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
    2. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Shun Xiang & Guangdi Hu & Ruisen Huang & Feng Guo & Pengkai Zhou, 2018. "Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints," Energies, MDPI, vol. 11(2), pages 1-20, January.
    4. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    5. Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
    6. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    7. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    8. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    9. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Chen, Kunlong & Zheng, Fangdan & Jiang, Jiuchun & Zhang, Weige & Jiang, Yan & Chen, Kunjin, 2017. "Practical failure recognition model of lithium-ion batteries based on partial charging process," Energy, Elsevier, vol. 138(C), pages 1199-1208.
    11. Haobin Jiang & Xijia Chen & Yifu Liu & Qian Zhao & Huanhuan Li & Biao Chen, 2021. "Online State-of-Charge Estimation Based on the Gas–Liquid Dynamics Model for Li(NiMnCo)O 2 Battery," Energies, MDPI, vol. 14(2), pages 1-19, January.
    12. Du, Yongchang & Zhao, Yue & Wang, Qinpu & Zhang, Yuanbo & Xia, Huaicheng, 2016. "Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus," Energy, Elsevier, vol. 115(P1), pages 1259-1271.
    13. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun & Sang-Joon Lee, 2022. "Lithium-Ion Battery Estimation in Online Framework Using Extreme Gradient Boosting Machine Learning Approach," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    14. Li, Weihan & Fan, Yue & Ringbeck, Florian & Jöst, Dominik & Sauer, Dirk Uwe, 2022. "Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression," Applied Energy, Elsevier, vol. 306(PB).
    15. Wei, Jingwen & Dong, Guangzhong & Chen, Zonghai & Kang, Yu, 2017. "System state estimation and optimal energy control framework for multicell lithium-ion battery system," Applied Energy, Elsevier, vol. 187(C), pages 37-49.
    16. Fan, Guodong & Li, Xiaoyu & Zhang, Ruigang, 2021. "Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures," Energy, Elsevier, vol. 223(C).
    17. Li, Kuo & Gao, Xiao & Liu, Caixia & Chang, Chun & Li, Xiaoyu, 2023. "A novel Co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method," Energy, Elsevier, vol. 269(C).
    18. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    19. Chi Zhang & Fuwu Yan & Changqing Du & Jianqiang Kang & Richard Fiifi Turkson, 2017. "Evaluating the Degradation Mechanism and State of Health of LiFePO 4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths," Energies, MDPI, vol. 10(1), pages 1-13, January.
    20. Zheng, Fangdan & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Pecht, Michael, 2016. "Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles," Energy, Elsevier, vol. 113(C), pages 64-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:505-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.