IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v111y2019icp145-156.html
   My bibliography  Save this article

Revolution of frequency regulation in the converter-dominated power system

Author

Listed:
  • Ye, Yida
  • Qiao, Ying
  • Lu, Zongxiang

Abstract

With the increase of converter-fed devices such as renewable energy sources, energy storage, electric vehicles, direct current transmissions and power electronic loads in the power system, the conventional synchronous generator (SG)-dominated power system has been gradually evolving toward a converter-dominated system. Power electronic interfaces (PEIs) can be controlled to emulate the frequency responses of SGs, but their inherent control mechanisms are quite different. As a result, the revolution of frequency regulation in the future converter-dominated power system is foreseeable from theory to practice. In this paper, the principle of frequency responses and the corresponding control strategies of PEIs are summarized. The major inherent differences between PEIs and SGs are clarified, and the distinctive releasable energy reserves and frequency response performances are revealed. The state-of-the-art frequency regulation strategies adopted by PEIs in different operation modes are reviewed. The multiple time-scale frequency behavior in converter-dominated power systems is presented. Some major technical challenges for future work are highlighted.

Suggested Citation

  • Ye, Yida & Qiao, Ying & Lu, Zongxiang, 2019. "Revolution of frequency regulation in the converter-dominated power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 145-156.
  • Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:145-156
    DOI: 10.1016/j.rser.2019.04.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    2. Llorente Iglesias, Rosario & Lacal Arantegui, Roberto & Aguado Alonso, Mónica, 2011. "Power electronics evolution in wind turbines—A market-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4982-4993.
    3. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    4. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    5. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    6. Majid Mehrasa & Edris Pouresmaeil & Bahram Pournazarian & Amir Sepehr & Mousa Marzband & João P. S. Catalão, 2018. "Synchronous Resonant Control Technique to Address Power Grid Instability Problems Due to High Renewables Penetration," Energies, MDPI, vol. 11(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narciso Castro Charris & Vladimir Sousa Santos & Juan Jos Cabello Eras, 2023. "Aspects to Consider in the Evaluation of Photovoltaic System Projects to Avoid Problems in Power Systems and Electric Motors," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 334-341, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    3. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    4. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.
    5. Li, Le & Zhu, Donghai & Zou, Xudong & Hu, Jiabing & Kang, Yong & Guerrero, Josep M., 2023. "Review of frequency regulation requirements for wind power plants in international grid codes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Alija Mujcinagic & Mirza Kusljugic & Emir Nukic, 2020. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area," Energies, MDPI, vol. 13(23), pages 1-17, November.
    8. Yuhong Wang & Jie Zhu & Qi Zeng & Zongsheng Zheng & Guangyuan Yu & Aihui Yin, 2021. "Frequency Coordinated Control Strategy for an HVDC Sending-End System with Wind Power Integration Based on Fuzzy Logic Control," Energies, MDPI, vol. 14(19), pages 1-25, September.
    9. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    12. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    13. Warren J. Farmer & Arnold J. Rix, 2021. "The Network Topology Metrics Contributing to Local-Area Frequency Stability in Power System Networks," Energies, MDPI, vol. 14(15), pages 1-28, July.
    14. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    15. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    16. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    17. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    18. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:145-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.