IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics030626192201008x.html
   My bibliography  Save this article

The effect of renewable electricity generation on the value of cross-border interconnection

Author

Listed:
  • Crozier, Constance
  • Baker, Kyri

Abstract

Connecting two electrical grids allows power to be traded between the areas, which can improve reliability and lower electricity prices. Over the coming years, electrical networks will have to adapt to larger amounts of intermittent renewable generation. Here we use hourly data from 155 world-wide geographic regions to investigate how the value of connecting electrical grids changes as renewable generation is incorporated. We show across five continents that significantly more interconnections are cost effective in a 100% renewables scenario, and that the investment savings they result in can be 100 times higher. Furthermore, we show that many interconnections that are profitable with dispatchable generation are not profitable in a renewable generation scenario. Finally, we show that in many cases the interconnection only reduces the investments costs of one of the two regions — with the larger electricity market, in general, seeing a greater cost reduction.

Suggested Citation

  • Crozier, Constance & Baker, Kyri, 2022. "The effect of renewable electricity generation on the value of cross-border interconnection," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192201008x
    DOI: 10.1016/j.apenergy.2022.119717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201008X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    2. Van Hertem, Dirk & Ghandhari, Mehrdad, 2010. "Multi-terminal VSC HVDC for the European supergrid: Obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3156-3163, December.
    3. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    4. Edmunds, R.K. & Cockerill, T.T. & Foxon, T.J. & Ingham, D.B. & Pourkashanian, M., 2014. "Technical benefits of energy storage and electricity interconnections in future British power systems," Energy, Elsevier, vol. 70(C), pages 577-587.
    5. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    6. Tlili, Olfa & Mansilla, Christine & Robinius, Martin & Syranidis, Konstantinos & Reuss, Markus & Linssen, Jochen & André, Jean & Perez, Yannick & Stolten, Detlef, 2019. "Role of electricity interconnections and impact of the geographical scale on the French potential of producing hydrogen via electricity surplus by 2035," Energy, Elsevier, vol. 172(C), pages 977-990.
    7. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    8. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    9. Christian Breyer, Dmitrii Bogdanov, Arman Aghahosseini, Ashish Gulagi, and Mahdi Fasihi, 2020. "On the Techno-economic Benefits of a Global Energy Interconnection," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1), pages 83-102.
    10. David Elliott, 2016. "A balancing act for renewables," Nature Energy, Nature, vol. 1(1), pages 1-3, January.
    11. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    12. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    13. Kim, Sehyun & Lee, Hyunjae & Kim, Heejin & Jang, Dong-Hwan & Kim, Hyun-Jin & Hur, Jin & Cho, Yoon-Sung & Hur, Kyeon, 2018. "Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 150-162.
    14. Philip J. Heptonstall & Robert J. K. Gross, 2021. "A systematic review of the costs and impacts of integrating variable renewables into power grids," Nature Energy, Nature, vol. 6(1), pages 72-83, January.
    15. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 137-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    4. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    5. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    6. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    7. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    8. Robert Bauer & Dominik Schopf & Grégoire Klaus & Raimund Brotsack & Javier Valdes, 2022. "Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria," Energies, MDPI, vol. 15(7), pages 1-22, April.
    9. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    10. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    11. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    12. Satymov, Rasul & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Global-local analysis of cost-optimal onshore wind turbine configurations considering wind classes and hub heights," Energy, Elsevier, vol. 256(C).
    13. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    14. Jafari, Mehdi & Korpås, Magnus & Botterud, Audun, 2020. "Power system decarbonization: Impacts of energy storage duration and interannual renewables variability," Renewable Energy, Elsevier, vol. 156(C), pages 1171-1185.
    15. Carmona, Roberto & Miranda, Ricardo & Rodriguez, Pablo & Garrido, René & Serafini, Daniel & Rodriguez, Angel & Mena, Marcelo & Fernandez Gil, Alejandro & Valdes, Javier & Masip, Yunesky, 2024. "Assessment of the green hydrogen value chain in cases of the local industry in Chile applying an optimization model," Energy, Elsevier, vol. 300(C).
    16. Henke, Hauke T.J. & Gardumi, Francesco & Howells, Mark, 2022. "The open source electricity Model Base for Europe - An engagement framework for open and transparent European energy modelling," Energy, Elsevier, vol. 239(PA).
    17. Thimet, P.J. & Mavromatidis, G., 2023. "What-where-when: Investigating the role of storage for the German electricity system transition," Applied Energy, Elsevier, vol. 351(C).
    18. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    19. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    20. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192201008x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.