IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p203-d127009.html
   My bibliography  Save this article

Stable Operation and Small-Signal Analysis of Multiple Parallel DG Inverters Based on a Virtual Synchronous Generator Scheme

Author

Listed:
  • Bo Zhang

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China
    Key Laboratory of Distributed Energy Storage and Microgrid of Hebei Province, North China Electric Power University, Baoding 071003, China)

  • Xiangwu Yan

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China
    Key Laboratory of Distributed Energy Storage and Microgrid of Hebei Province, North China Electric Power University, Baoding 071003, China)

  • Dongxue Li

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Xueyuan Zhang

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Jinzuo Han

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Xiangning Xiao

    (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

For a high penetration level of distributed energy resources (DERs) in the grid, virtual synchronous generator (VSG) control is applied to the power electronic converters to mimic the rotating mass and damping property of a conventional synchronous generator (SG), which can support virtual inertia and damping for the power system. For VSG control, a phase locked loop (PLL) is needed to estimate the angular frequency of the point of common coupling (PCC); however, the deviation of PLL will affect the accuracy of the active power reference, and even the VSG stability control. From this perspective, an enhanced active power controller without PLL was proposed for VSG control. Furthermore, an accurate small-signal model of the multiple parallel VSGs system that considers the dynamic characteristics and the changing of a steady state operation point was derived for system analysis and parameter design. Based on this model, the influence rules of the eigenvalues by droop and virtual inertia were acquired. The simulation and experimental results are presented to verify the validity of the proposed active power controller and parameter design rules.

Suggested Citation

  • Bo Zhang & Xiangwu Yan & Dongxue Li & Xueyuan Zhang & Jinzuo Han & Xiangning Xiao, 2018. "Stable Operation and Small-Signal Analysis of Multiple Parallel DG Inverters Based on a Virtual Synchronous Generator Scheme," Energies, MDPI, vol. 11(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:203-:d:127009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/203/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    3. Jae Suk Lee, 2018. "Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations," Energies, MDPI, vol. 11(8), pages 1-18, August.
    4. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:203-:d:127009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.