IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p873-d103071.html
   My bibliography  Save this article

Small-Signal Stability Analysis of Interaction Modes in VSC MTDC Systems with Voltage Margin Control

Author

Listed:
  • Goran Grdenić

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

  • Marko Delimar

    (Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia)

Abstract

Multi-terminal Direct Current Transmission (MTDC) is an emerging and promising technology for the transmission of electricity and the main initiator of the development of MTDC grids is offshore wind generation. However, prior to their construction, a thorough investigation of different aspects of their implementation and operation is required. In this research, an MTDC grid with voltage margin control consisting of voltage source converters (VSCs) and a high frequency cable model was implemented in Matlab/SIMULINK (R2015b, The MathWorks, Inc., Natick, MA, USA). Small-signal stability analysis was carried out to investigate the sensitivity of the grid’s interaction modes to the operating point, the structure of the grid, and the selection of the voltage controlling converter. Based on the findings of these analyses, a strategy for droop control method is proposed and demonstrated.

Suggested Citation

  • Goran Grdenić & Marko Delimar, 2017. "Small-Signal Stability Analysis of Interaction Modes in VSC MTDC Systems with Voltage Margin Control," Energies, MDPI, vol. 10(7), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:873-:d:103071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shimin Xue & Jingyue Yang & Yanxia Chen & Cunping Wang & Zhe Shi & Miao Cui & Botong Li, 2016. "The Applicability of Traditional Protection Methods to Lines Emanating from VSC-HVDC Interconnectors and a Novel Protection Principle," Energies, MDPI, vol. 9(6), pages 1-27, May.
    2. Muhammad Raza & Kevin Schönleber & Oriol Gomis-Bellmunt, 2016. "Droop Control Design of Multi-VSC Systems for Offshore Networks to Integrate Wind Energy," Energies, MDPI, vol. 9(10), pages 1-16, October.
    3. Xinyin Zhang & Zaijun Wu & Minqiang Hu & Xianyun Li & Ganyun Lv, 2015. "Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through," Energies, MDPI, vol. 8(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jae Suk Lee, 2018. "Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations," Energies, MDPI, vol. 11(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimin Xue & Junchi Lu & Chong Liu & Yabing Sun & Baibing Liu & Cheng Gu, 2018. "A Novel Single-Terminal Fault Location Method for AC Transmission Lines in a MMC-HVDC-Based AC/DC Hybrid System," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Yingyu Liang & Guanjun Xu & Wenting Zha & Cong Wang, 2019. "Adaptability Analysis of Fault Component Distance Protection on Transmission Lines Connected to Photovoltaic Power Stations," Energies, MDPI, vol. 12(8), pages 1-19, April.
    4. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines," Energies, MDPI, vol. 10(4), pages 1-15, April.
    5. Haipeng Xie & Zhaohong Bie & Yanling Lin & Chao Zheng, 2017. "A Hybrid Reliability Evaluation Method for Meshed VSC-HVDC Grids," Energies, MDPI, vol. 10(7), pages 1-17, July.
    6. Attya, A.B. & Anaya-Lara, O. & Leithead, W.E., 2018. "Novel concept of renewables association with synchronous generation for enhancing the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1035-1047.
    7. Ali Bidadfar & Oscar Saborío-Romano & Jayachandra Naidu Sakamuri & Vladislav Akhmatov & Nicolaos Antonio Cutululis & Poul Ejnar Sørensen, 2019. "Coordinated Control of HVDC and HVAC Power Transmission Systems Integrating a Large Offshore Wind Farm," Energies, MDPI, vol. 12(18), pages 1-13, September.
    8. Chi Hsiang Lin, 2022. "The Impact of Integration of the VSC-HVDC Connected Offshore Wind Farm on Torsional Vibrations of Steam Turbine Generators," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    9. Raza, Muhammad & Collados, Carlos & Gomis-Bellmunt, Oriol, 2017. "Reactive power management in an offshore AC network having multiple voltage source converters," Applied Energy, Elsevier, vol. 206(C), pages 793-803.
    10. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    11. Hyeong-Jin Lee & Jin-Su Kim & Jae-Chul Kim, 2018. "Parameter Estimation of Chopper Resistor in Medium-Voltage-Direct-Current during Grid Fault Ride through," Energies, MDPI, vol. 11(12), pages 1-14, December.
    12. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    13. Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:873-:d:103071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.