IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5014-d615061.html
   My bibliography  Save this article

Parameter Matching of Energy Regeneration System for Parallel Hydraulic Hybrid Loader

Author

Listed:
  • Jixiang Yang

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Yongming Bian

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Meng Yang

    (State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
    Department of Control Science and Engineering, Tongji University, Shanghai 201804, China)

  • Jie Shao

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Ao Liang

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

Abstract

Oil shortages and environmental pollution are attracting worldwide attention incrementally. Hybrid falls within one of the effective techniques for those two problems. Taking the loader with high energy consumption and high emission as the target, combined with the hydraulic hybrid technology with high power density and strong energy storage capacity, the parallel hydraulic hybrid loader (PHHL) based on brake energy regeneration is proposed. Firstly, the dynamic models of the key components of the PHHL are established, and the parameters of the part which coincides with the ordinary loader are corrected based on the V-type duty cycle. Then, consid-ering the energy recovery efficiency as well as the characteristics of the loader from the V-type duty cycle, the parameters for several major parts of the energy regeneration system (ERS) were calculated and matched. Then, based on the initial matching, the improved adaptive genetic al-gorithm (AGA) is employed to optimize the control variable of the control strategy and the design parameters of ERS to enhance the economic benefit and performance of the ERS. Furthermore, a simulation validation was conducted. Simulation results show that the ERS with optimized pa-rameters could improve the fuel-saving effect by 25% compared to the ERS with initial parameters, which indicated the rationality of the optimized parameters. Finally, the fuel consumption test of the PHHL prototype under the V-type duty cycle is performed. The results show that the PHHL with the optimization scheme can achieve 9.12% fuel saving, which is on the brink of the potential of brake energy recovery and verifies the feasibility of applying hydraulic hybrid technology on the loader.

Suggested Citation

  • Jixiang Yang & Yongming Bian & Meng Yang & Jie Shao & Ao Liang, 2021. "Parameter Matching of Energy Regeneration System for Parallel Hydraulic Hybrid Loader," Energies, MDPI, vol. 14(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5014-:d:615061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Tianyu & Liu, Huiying & Ding, Daolin, 2018. "Predictive energy management of fuel cell supercapacitor hybrid construction equipment," Energy, Elsevier, vol. 149(C), pages 718-729.
    2. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    3. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    4. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    5. Xiaoliang Lai & Cheng Guan, 2013. "A Parameter Matching Method of the Parallel Hydraulic Hybrid Excavator Optimized with Genetic Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-6, September.
    6. Yong Wang & Dongye Sun, 2014. "Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, November.
    7. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.
    8. Pengxiang Song & Yulong Lei & Yao Fu, 2020. "Multi-Objective Optimization and Matching of Power Source for PHEV Based on Genetic Algorithm," Energies, MDPI, vol. 13(5), pages 1-20, March.
    9. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jichao Liu & Yanyan Liang & Zheng Chen & Wenpeng Chen, 2023. "Energy Management Strategies for Hybrid Loaders: Classification, Comparison and Prospect," Energies, MDPI, vol. 16(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip K. Agyeman & Gangfeng Tan & Frimpong J. Alex & Jamshid F. Valiev & Prince Owusu-Ansah & Isaac O. Olayode & Mohammed A. Hassan, 2022. "Parameter Matching, Optimization, and Classification of Hybrid Electric Emergency Rescue Vehicles Based on Support Vector Machines," Energies, MDPI, vol. 15(19), pages 1-23, September.
    2. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    3. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    4. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    5. Qian, Long & Xu, Xiaolin & Sun, Ying & Zhou, Yunjie, 2022. "Carbon emission reduction effects of eco-industrial park policy in China," Energy, Elsevier, vol. 261(PB).
    6. Jichao Liu & Yanyan Liang & Zheng Chen & Wenpeng Chen, 2023. "Energy Management Strategies for Hybrid Loaders: Classification, Comparison and Prospect," Energies, MDPI, vol. 16(7), pages 1-23, March.
    7. Jovan, David Jure & Dolanc, Gregor & Pregelj, Boštjan, 2022. "Utilization of excess water accumulation for green hydrogen production in a run-of-river hydropower plant," Renewable Energy, Elsevier, vol. 195(C), pages 780-794.
    8. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    9. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    10. Emodi, Nnaemeka Vincent & Wade, Belinda & Rekker, Saphira & Greig, Chris, 2022. "A systematic review of barriers to greenfield investment in decarbonisation solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    13. Soleimani, Borhan & Keihan Asl, Dariush & Estakhr, Javad & Seifi, Ali Reza, 2022. "Integrated optimization of multi-carrier energy systems: Water-energy nexus case," Energy, Elsevier, vol. 257(C).
    14. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    15. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    16. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    17. Yuan, Peng & Pu, Yuran & Liu, Chang, 2021. "Improving electricity supply reliability in China: Cost and incentive regulation," Energy, Elsevier, vol. 237(C).
    18. Dylan Sheneth Edirisinghe & Ho-Seong Yang & Min-Sung Kim & Byung-Ha Kim & Sudath Prasanna Gunawardane & Young-Ho Lee, 2021. "Computational Flow Analysis on a Real Scale Run-of-River Archimedes Screw Turbine with a High Incline Angle," Energies, MDPI, vol. 14(11), pages 1-18, June.
    19. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    20. Wei Zhang & Jixin Wang & Shaofeng Du & Hongfeng Ma & Wenjun Zhao & Haojie Li, 2019. "Energy Management Strategies for Hybrid Construction Machinery: Evolution, Classification, Comparison and Future Trends," Energies, MDPI, vol. 12(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5014-:d:615061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.