IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1826-d157577.html
   My bibliography  Save this article

A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control †

Author

Listed:
  • Zakariya M. Dalala

    (Energy Engineering Department, German Jordanian University, Amman 11180, Jordan)

  • Osama Saadeh

    (Energy Engineering Department, German Jordanian University, Amman 11180, Jordan)

  • Mathhar Bdour

    (Energy Engineering Department, German Jordanian University, Amman 11180, Jordan)

  • Zaka Ullah Zahid

    (Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

Abstract

This paper proposes a new maximum power point tracking (MPPT) algorithm for thermoelectric generators (TEG). The new-presented method is based on implementing an indirect open circuit voltage detection and short circuit current estimation methods, which will be used to directly control the TEG interface power converter, resulting in reaching the maximum power point (MPP) in minimal number of steps. Two modes of operation are used in the proposed algorithm, namely the perturb and observe (P&O) method for fine-tuning and the transient mode for coarse tracking of the MPP during fast changes that occur to the temperature gradient across the structure. A novel voltage sensing technique as well is proposed in this work, to reduce the number of voltage sensors used to control and monitor the power converter. The proposed strategy employs a novel approach to sense two different voltages using the same voltage sensor. The input and output voltage information is collected from an intermediate point in the converter. The reconstructed voltages are used in the control loops as well as for monitoring the battery output or load voltages. Simulation and experimental results are provided to validate the effectiveness of the proposed algorithm and the sensing technique.

Suggested Citation

  • Zakariya M. Dalala & Osama Saadeh & Mathhar Bdour & Zaka Ullah Zahid, 2018. "A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control †," Energies, MDPI, vol. 11(7), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1826-:d:157577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    2. Rowe, D.M., 1999. "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, Elsevier, vol. 16(1), pages 1251-1256.
    3. Champier, D. & Bédécarrats, J.P. & Kousksou, T. & Rivaletto, M. & Strub, F. & Pignolet, P., 2011. "Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove," Energy, Elsevier, vol. 36(3), pages 1518-1526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maissa Farhat & Oscar Barambones & Lassaâd Sbita, 2020. "A Real-Time Implementation of Novel and Stable Variable Step Size MPPT," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Hegazy Rezk & Mohammed Mazen Alhato & Mujahed Al-Dhaifallah & Soufiene Bouallègue, 2021. "A Sine Cosine Algorithm-Based Fractional MPPT for Thermoelectric Generation System," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    3. Ricardo Marroquín-Arreola & Jinmi Lezama & Héctor Ricardo Hernández-De León & Julio César Martínez-Romo & José Antonio Hoyo-Montaño & Jorge Luis Camas-Anzueto & Elías Neftalí Escobar-Gómez & Jorge Eva, 2022. "Design of an MPPT Technique for the Indirect Measurement of the Open-Circuit Voltage Applied to Thermoelectric Generators," Energies, MDPI, vol. 15(10), pages 1-20, May.
    4. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    5. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    6. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    7. Loise Rissini Kramer & Anderson Luis Oliveira Maran & Samara Silva de Souza & Oswaldo Hideo Ando Junior, 2019. "Analytical and Numerical Study for the Determination of a Thermoelectric Generator’s Internal Resistance," Energies, MDPI, vol. 12(16), pages 1-12, August.
    8. Saksham Consul & Krishna Veer Singh & Hari Om Bansal & Katherine A. Kim, 2023. "Intelligent switching mechanism for power distribution in photovoltaic-fed battery electric vehicles," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8259-8278, August.
    9. Meysam Karami Rad & Mahmoud Omid & Ali Rajabipour & Fariba Tajabadi & Lasse Aistrup Rosendahl & Alireza Rezaniakolaei, 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition," Energies, MDPI, vol. 11(9), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    2. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    3. Jang, Jiin-Yuh & Tsai, Ying-Chi & Wu, Chan-Wei, 2013. "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, Elsevier, vol. 53(C), pages 270-281.
    4. Patil, Dipak S. & Arakerimath, Rachayya R. & Walke, Pramod V., 2018. "Thermoelectric materials and heat exchangers for power generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 1-22.
    5. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational and experimental analysis of a commercially available Seebeck module," Renewable Energy, Elsevier, vol. 74(C), pages 1-10.
    6. Pascal Boulet & Marie-Christine Record, 2020. "Theoretical Investigations of the BaRh 2 Ge 4 X 6 (X = S, Se, Te) Compounds," Energies, MDPI, vol. 13(23), pages 1-21, December.
    7. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    9. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    10. Zhi Li & Wenhao Li & Zhen Chen, 2017. "Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant," Energies, MDPI, vol. 10(10), pages 1-15, September.
    11. Jiawei Zhang & Nikolaj Roth & Kasper Tolborg & Seiya Takahashi & Lirong Song & Martin Bondesgaard & Eiji Nishibori & Bo B. Iversen, 2021. "Direct observation of one-dimensional disordered diffusion channel in a chain-like thermoelectric with ultralow thermal conductivity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Yihua Zhang & Guyang Peng & Shuankui Li & Haijun Wu & Kaidong Chen & Jiandong Wang & Zhihao Zhao & Tu Lyu & Yuan Yu & Chaohua Zhang & Yang Zhang & Chuansheng Ma & Shengwu Guo & Xiangdong Ding & Jun Su, 2024. "Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Sun, Wenchao & Huang, Yuewu & Zhao, Yonggang, 2023. "Performance assessment of a coupled device of thermoradiation cell and photovoltaic cell for energy cascade utilization," Energy, Elsevier, vol. 281(C).
    14. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Bushra Jabar & Fu Li & Zhuanghao Zheng & Adil Mansoor & Yongbin Zhu & Chongbin Liang & Dongwei Ao & Yuexing Chen & Guangxing Liang & Ping Fan & Weishu Liu, 2021. "Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Li, Guo-neng & Zhang, Shuai & Zheng, You-qu & Zhu, Ling-yun & Guo, Wen-wen, 2018. "Experimental study on a stove-powered thermoelectric generator (STEG) with self starting fan cooling," Renewable Energy, Elsevier, vol. 121(C), pages 502-512.
    18. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1826-:d:157577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.