IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p359-d200294.html
   My bibliography  Save this article

The Data-Driven Optimization Method and Its Application in Feature Extraction of Ship-Radiated Noise with Sample Entropy

Author

Listed:
  • Yuxing Li

    (Faculty of Information Technology and Equipment Engineering, Xi’an University of Technology, Xi’an 710048, Shaanxi, China)

  • Xiao Chen

    (College of Electrical & Information Engineering, ShaanXi University of Science & Technology, Xi’an 710021, Shaanxi, China)

  • Jing Yu

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China)

  • Xiaohui Yang

    (School of Art and Design, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China)

  • Huijun Yang

    (College of Information Engineering, Northwest A&F University, Yang’ling 712100, Shaanxi, China)

Abstract

The data-driven method is an important tool in the field of underwater acoustic signal processing. In order to realize the feature extraction of ship-radiated noise (S-RN), we proposed a data-driven optimization method called improved variational mode decomposition (IVMD). IVMD, as an improved method of variational mode decomposition (VMD), solved the problem of choosing decomposition layers for VMD by using a frequency-aided method. Furthermore, a novel method of feature extraction for S-RN, which combines IVMD and sample entropy (SE), is put forward in this paper. In this study, four types of S-RN signals are decomposed into a group of intrinsic mode functions (IMFs) by IVMD. Then, SEs of all IMFs are calculated. SEs are different in the maximum energy IMFs (EIMFs), thus, SE of the EIMF is seen as a novel feature for S-RN. To verify the effectiveness of the proposed method, a comparison has been conducted by comparing features of center frequency and SE of the EIMF by IVMD, empirical mode decomposition (EMD) and ensemble EMD (EEMD). The analysis results show that the feature of S-RN can be obtain efficiently and accurately by using the proposed method.

Suggested Citation

  • Yuxing Li & Xiao Chen & Jing Yu & Xiaohui Yang & Huijun Yang, 2019. "The Data-Driven Optimization Method and Its Application in Feature Extraction of Ship-Radiated Noise with Sample Entropy," Energies, MDPI, vol. 12(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:359-:d:200294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dechang Yang & Wenlong Liao & Yusen Wang & Keqing Zeng & Qiuyue Chen & Dingqian Li, 2018. "Data-Driven Optimization Control for Dynamic Reconfiguration of Distribution Network," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Jianzhong Zhou & Na Sun & Benjun Jia & Tian Peng, 2018. "A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 11(7), pages 1-27, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    2. Jian Yang & Xin Zhao & Haikun Wei & Kanjian Zhang, 2019. "Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(3), pages 1-12, January.
    3. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    4. Wei Sun & Qi Gao, 2019. "Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model," Energies, MDPI, vol. 12(12), pages 1-27, June.
    5. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    6. Hassan, Bryar A. & Rashid, Tarik A., 2020. "Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    7. David Schönheit & Dominik Möst, 2019. "The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany’s Day-Ahead Wind Energy Forecasts," Energies, MDPI, vol. 12(13), pages 1-23, July.
    8. Yonggang Li & Yue Wang & Binyuan Wu, 2020. "Short-Term Direct Probability Prediction Model of Wind Power Based on Improved Natural Gradient Boosting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    9. Qinkai Han & Hao Wu & Tao Hu & Fulei Chu, 2018. "Short-Term Wind Speed Forecasting Based on Signal Decomposing Algorithm and Hybrid Linear/Nonlinear Models," Energies, MDPI, vol. 11(11), pages 1-23, November.
    10. Sun, Na & Zhou, Jianzhong & Chen, Lu & Jia, Benjun & Tayyab, Muhammad & Peng, Tian, 2018. "An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine," Energy, Elsevier, vol. 165(PB), pages 939-957.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:359-:d:200294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.