IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1651-d154321.html
   My bibliography  Save this article

Study on EV Charging Peak Reduction with V2G Utilizing Idle Charging Stations: The Jeju Island Case

Author

Listed:
  • Hye-Seung Han

    (Department of Electrical Engineering, Gachon University, Gyeonggi-do 13120, Korea)

  • Eunsung Oh

    (Department of Electrical and Electronic Engineering, Hanseo University, Chungcheongnam-do 31962, Korea)

  • Sung-Yong Son

    (Department of Electrical Engineering, Gachon University, Gyeonggi-do 13120, Korea)

Abstract

Electric vehicles (EVs), one of the biggest innovations in the automobile industry, are considered as a demand source as well as a supply source for power grids. Studies have been conducted on the effect of EV charging and utilization of EVs to control grid peak or to solve the intermittency problem of renewable generators. However, most of these studies focus on only one aspect of EVs. In this work, we demonstrate that the increased demand resulting from EV charging can be alleviated by utilizing idle EV charging stations as a vehicle-to-grid (V2G) service. The work is performed based on data from Jeju Island, Korea. The EV demand pattern in 2030 is modeled and forecasted using EV charging patterns from historical data and the EV and charging station deployment plan of Jeju Island’s local government. Then, using a Monte Carlo simulation, charging and V2G scenarios are generated, and the effect of V2G on peak time is analyzed. In addition, a sensitivity analysis is performed for EV and charging station deployment. The results show that the EV charging demand increase can be resolved within the EV ecosystem.

Suggested Citation

  • Hye-Seung Han & Eunsung Oh & Sung-Yong Son, 2018. "Study on EV Charging Peak Reduction with V2G Utilizing Idle Charging Stations: The Jeju Island Case," Energies, MDPI, vol. 11(7), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1651-:d:154321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    2. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    3. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    4. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    5. Sujie Shao & Shaoyong Guo & Xuesong Qiu, 2017. "A Mobile Battery Swapping Service for Electric Vehicles Based on a Battery Swapping Van," Energies, MDPI, vol. 10(10), pages 1-21, October.
    6. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    7. Jan M. Chaiken & Richard C. Larson, 1972. "Methods for Allocating Urban Emergency Units: A Survey," Management Science, INFORMS, vol. 19(4-Part-2), pages 110-130, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Karakitsios & Dimitrios Lagos & Aris Dimeas & Nikos Hatziargyriou, 2023. "How Can EVs Support High RES Penetration in Islands," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    3. Bong-Gi Choi & Byeong-Chan Oh & Sungyun Choi & Sung-Yul Kim, 2020. "Selecting Locations of Electric Vehicle Charging Stations Based on the Traffic Load Eliminating Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    4. Park, Sung-Won & Cho, Kyu-Sang & Hoefter, Gregor & Son, Sung-Yong, 2022. "Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system," Applied Energy, Elsevier, vol. 305(C).
    5. Moon-Jong Jang & Taehoon Kim & Eunsung Oh, 2023. "Data-Driven Modeling of Vehicle-to-Grid Flexibility in Korea," Sustainability, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    2. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    3. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    4. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    5. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    6. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    7. Liu, Yuechen Sophia & Tayarani, Mohammad & Gao, H. Oliver, 2022. "An activity-based travel and charging behavior model for simulating battery electric vehicle charging demand," Energy, Elsevier, vol. 258(C).
    8. Hao, Ying & Dong, Lei & Liang, Jun & Liao, Xiaozhong & Wang, Lijie & Shi, Lefeng, 2020. "Power forecasting-based coordination dispatch of PV power generation and electric vehicles charging in microgrid," Renewable Energy, Elsevier, vol. 155(C), pages 1191-1210.
    9. Shi, Jiaqi & Liu, Nian & Huang, Yujing & Ma, Liya, 2022. "An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off," Applied Energy, Elsevier, vol. 310(C).
    10. Saad Ullah Khan & Khawaja Khalid Mehmood & Zunaib Maqsood Haider & Muhammad Kashif Rafique & Muhammad Omer Khan & Chul-Hwan Kim, 2021. "Coordination of Multiple Electric Vehicle Aggregators for Peak Shaving and Valley Filling in Distribution Feeders," Energies, MDPI, vol. 14(2), pages 1-16, January.
    11. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    12. Qiang Xing & Zhong Chen & Ziqi Zhang & Xiao Xu & Tian Zhang & Xueliang Huang & Haiwei Wang, 2020. "Urban Electric Vehicle Fast-Charging Demand Forecasting Model Based on Data-Driven Approach and Human Decision-Making Behavior," Energies, MDPI, vol. 13(6), pages 1-32, March.
    13. Simona Bigerna & Silvia Micheli, 2018. "Attitudes Toward Electric Vehicles: The Case of Perugia Using a Fuzzy Set Analysis," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    14. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    15. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    16. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    17. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    19. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    20. Li, Zhe & Ouyang, Minggao, 2011. "A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market," Energy Policy, Elsevier, vol. 39(6), pages 3222-3237, June.

    More about this item

    Keywords

    EV; V2G; idle station; queueing; simulation; peak reduction;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1651-:d:154321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.