IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p410-d93626.html
   My bibliography  Save this article

Accurate and Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors

Author

Listed:
  • Lei Yu

    (Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China)

  • Youtong Zhang

    (Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China)

  • Wenqing Huang

    (United Automotive Electronic System Co., Ltd., Shanghai 201206, China)

Abstract

: In this paper, an effective method to achieve accurate and efficient torque control of an interior permanent magnet synchronous motor (IPMSM) in electric vehicles, based on low-resolution Hall-effect sensors, is proposed. The high-resolution rotor position is estimated by a proportional integral (PI) regulator using the deviation between actual output power and reference output power. This method can compensate for the Hall position sensor mounting error, and estimate rotor position continuously and accurately. The permanent magnetic flux linkage is also estimated based on a current PI controller. Other important parameters, such as the d -axis and q -axis inductances, stator resistance, and energy loss, are measured offline by experiments. The measured parameters are saved as lookup tables which cover the entire current operating range at different current levels. Based on these accurate parameters, a maximum torque per ampere (MTPA) control strategy, combined with the feedforward parameter iteration method, can be achieved for accurate and efficient torque control. The effectiveness of the proposed method is verified by both simulation and experimental results.

Suggested Citation

  • Lei Yu & Youtong Zhang & Wenqing Huang, 2017. "Accurate and Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors," Energies, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:410-:d:93626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    2. Bo Xu & Fangqiang Mu & Guoding Shi & Wei Ji & Huangqiu Zhu, 2016. "State Estimation of Permanent Magnet Synchronous Motor Using Improved Square Root UKF," Energies, MDPI, vol. 9(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianfei Zhao & Minqi Hua & Tingzhang Liu, 2018. "Research on a Sliding Mode Vector Control System Based on Collaborative Optimization of an Axial Flux Permanent Magnet Synchronous Motor for an Electric Vehicle," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Hongqian Wei & Youtong Zhang & Lei Yu & Mengzhu Zhang & Khaled Teffah, 2018. "A New Diagnostic Algorithm for Multiple IGBTs Open Circuit Faults by the Phase Currents for Power Inverter in Electric Vehicles," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    4. Željko Plantić & Tine Marčič & Miloš Beković & Gorazd Štumberger, 2019. "Sensorless PMSM Drive Implementation by Introduction of Maximum Efficiency Characteristics in Reference Current Generation," Energies, MDPI, vol. 12(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Liu & Qiaoling Tong & Qiao Zhang & Qidong Li & Linkai Li & Zhaoxuan Wu, 2018. "A Method to Improve the Response of a Speed Loop by Using a Reduced-Order Extended Kalman Filter," Energies, MDPI, vol. 11(11), pages 1-16, October.
    2. Zhou, Zhenhu & Zhan, Mingjing & Wu, Baigong & Xu, Guoqi & Zhang, Xiao & Cheng, Junjie & Gao, Ming, 2024. "A novel adaptive unscented kalman filter algorithm for SOC estimation to reduce the sensitivity of attenuation coefficient," Energy, Elsevier, vol. 307(C).
    3. Faiz Husnayain & Toshihiko Noguchi & Ryosuke Akaki & Feri Yusivar, 2023. "Improved Current and MTPA Control Characteristics Using FEM-Based Inductance Maps for Vector-Controlled IPM Motor," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Mohamed Nabil Fathy Ibrahim & Peter Sergeant & Essam Rashad, 2016. "Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors," Energies, MDPI, vol. 9(11), pages 1-14, November.
    5. Seok-Kyoon Kim, 2017. "Proportional-Type Performance Recovery DC-Link Voltage Tracking Algorithm for Permanent Magnet Synchronous Generators," Energies, MDPI, vol. 10(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:410-:d:93626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.