IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1463-d150875.html
   My bibliography  Save this article

A Survey on Equivalence Modeling for Large-Scale Photovoltaic Power Plants

Author

Listed:
  • Pingping Han

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Zihao Lin

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Lei Wang

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Guijun Fan

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Xiaoan Zhang

    (Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, China)

Abstract

Due to the huge data of large-scale photovoltaic (PV) power plants, the establishment of its equivalent model is more practical than a detailed model. In connection with the current research status, this paper reviews the steady-state equivalent model and transient equivalent model of PV power plants. The steady-state equivalent model is used for power flow calculation and static stability analysis. Transient equivalent models contain the single-machine equivalent model and the multi-machine equivalent models, which are used for the simulation analysis of large disturbances. The calculation of equivalent parameters and the equivalence of power collection system are briefly introduced. The conclusion and problems to be solved are put forward at the end. The establishment of the equivalent model simplifies the detailed model, which is convenient for the planning and simulation analysis of the PV power plant, and can also accurately characterize the operating characteristics of the PV power plant, which is of great significance.

Suggested Citation

  • Pingping Han & Zihao Lin & Lei Wang & Guijun Fan & Xiaoan Zhang, 2018. "A Survey on Equivalence Modeling for Large-Scale Photovoltaic Power Plants," Energies, MDPI, vol. 11(6), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1463-:d:150875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Ding & Yan Zhang & Pingping Han & Yuying Bao & Haitian Zhang, 2018. "Research on Optimal Wind Power Penetration Ratio and the Effects of a Wind-Thermal-Bundled System under the Constraint of Rotor Angle Transient Stability," Energies, MDPI, vol. 11(3), pages 1-22, March.
    2. Khoury, J. & Mbayed, R. & Salloum, G. & Monmasson, E. & Guerrero, J., 2016. "Review on the integration of photovoltaic renewable energy in developing countries—Special attention to the Lebanese case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 562-575.
    3. Zou, Jianxiao & Peng, Chao & Yan, Yan & Zheng, Hong & Li, Yan, 2014. "A survey of dynamic equivalent modeling for wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 956-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Junjun Zhang & Yaojie Sun & Meiyin Liu & Wei Dong & Pingping Han, 2018. "Research on Modeling of Microgrid Based on Data Testing and Parameter Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    3. Pingping Han & Yu Zhang & Lei Wang & Yan Zhang & Zihao Lin, 2018. "Model Reduction of DFIG Wind Turbine System Based on Inner Coupling Analysis," Energies, MDPI, vol. 11(11), pages 1-22, November.
    4. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    5. Mengjun Liao & Lin Zhu & Yonghao Hu & Yang Liu & Yue Wu & Leke Chen, 2023. "Dynamic Equivalent Modeling of a Large Renewable Power Plant Using a Data-Driven Degree of Similarity Method," Energies, MDPI, vol. 16(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muttqi, Kashem M. & Aghaei, Jamshid & Askarpour, Mohammad & Ganapathy, Velappa, 2017. "Minimizing the steady-state impediments to solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1329-1345.
    2. Meshari Alshammari & Maeve Duffy, 2021. "Feasibility Analysis of a DC Distribution System for a 6 kW Photovoltaic Installation in Ireland," Energies, MDPI, vol. 14(19), pages 1-17, October.
    3. Zong, Haoxiang & Lyu, Jing & Wang, Xiao & Zhang, Chen & Zhang, Ruifang & Cai, Xu, 2021. "Grey box aggregation modeling of wind farm for wideband oscillations analysis," Applied Energy, Elsevier, vol. 283(C).
    4. M. A. Munjer & Md. Zahid Hasan & M. Khalid Hossain & Md. Ferdous Rahman, 2023. "The Obstruction and Advancement in Sustainable Energy Sector to Achieve SDG in Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    5. Moore, Henrietta L. & Collins, Hannah, 2020. "Decentralised renewable energy and prosperity for Lebanon," Energy Policy, Elsevier, vol. 137(C).
    6. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Qunli Wu & Chenyang Peng, 2015. "Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(12), pages 1-15, December.
    8. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    9. Olleik, Majd & Auer, Hans & Nasr, Rawad, 2021. "A petroleum upstream production sharing contract with investments in renewable energy: The case of Lebanon," Energy Policy, Elsevier, vol. 154(C).
    10. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Mirjanić, Dragoljub LJ. & Divnić, Darko, 2016. "Photovoltaic solar plants in the Republic of Srpska - current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 546-560.
    11. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    13. Ridha Cheikh & Hocine Belmili & Arezki Menacer & Said Drid & L. Chrifi-Alaoui, 2019. "Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 632-643, August.
    14. Andersson-Hudson, Jessica & Knight, William & Humphrey, Mathew & O’Hara, Sarah, 2016. "Exploring support for shale gas extraction in the United Kingdom," Energy Policy, Elsevier, vol. 98(C), pages 582-589.
    15. Naemi, Mostafa & Brear, Michael J., 2020. "A hierarchical, physical and data-driven approach to wind farm modelling," Renewable Energy, Elsevier, vol. 162(C), pages 1195-1207.
    16. Yi Tang & Jianfeng Dai & Jia Ning & Jie Dang & Yan Li & Xinshou Tian, 2017. "An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation," Energies, MDPI, vol. 10(11), pages 1-18, November.
    17. Abbassi, Abdelkader & Abbassi, Rabeh & Heidari, Ali Asghar & Oliva, Diego & Chen, Huiling & Habib, Arslan & Jemli, Mohamed & Wang, Mingjing, 2020. "Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach," Energy, Elsevier, vol. 198(C).
    18. Pingping Han & Yu Zhang & Lei Wang & Yan Zhang & Zihao Lin, 2018. "Model Reduction of DFIG Wind Turbine System Based on Inner Coupling Analysis," Energies, MDPI, vol. 11(11), pages 1-22, November.
    19. Gorgan, Maxim & Hartvigsen, Morten, 2022. "Development of agricultural land markets in countries in Eastern Europe and Central Asia," Land Use Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1463-:d:150875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.