IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3234-d184517.html
   My bibliography  Save this article

Model Reduction of DFIG Wind Turbine System Based on Inner Coupling Analysis

Author

Listed:
  • Pingping Han

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Yu Zhang

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Lei Wang

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Yan Zhang

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

  • Zihao Lin

    (Anhui Provincial Laboratory of New Energy Utilization and Energy Conservation, Hefei University of Technology, Hefei 230009, China)

Abstract

The doubly-fed induction generator (DFIG) wind turbine system, which is composed of the wind turbine, generator, rotor-side converter, grid-side converter, and so on, is a typical multi-time scale system. The dynamic processes at different time scales do not exist in isolation. Furthermore, neglecting the coupling of parameters of different time scales to reduce the order of the model will lead to deviation between the simulation results and the actual results, which may not be suitable for power system transient analysis. This paper proposes an electromechanical transient model and an electromagnetic transient model of the DFIG wind turbine system that consider the interaction of multiple time-scale dynamic processes. Firstly, the paper applies the modal analysis method to explain the multi-time scale characteristics of the DFIG wind turbine system. Secondly, the variation in the eigenvalues of the DFIG wind turbine system before and after the order reduction and the coupling between variables and the system, as well as the coupling between variables of different time scales, are analyzed to obtain the preliminary 21-order simplified model. Thirdly, considering the weak coupling characteristics between the mechanical part and the electromagnetic part of the DFIG wind turbine system, the 21-order simplified model is decomposed into a 15-order electromagnetic transient model and a six-order electromechanical transient model on the basis of their time scales. Then, according to the balance between simulation time and simulation accuracy, the 14-order electromagnetic transient model and the 10 or 12-order electromechanical transient model are finally obtained. Finally, the rationality of the simplified models is verified by simulations under two large disturbance conditions, namely wind speed abrupt change and voltage sag. The obtained simplified models have reference significance for improving the simulation speed of a wind power grid-connected system and analyzing the internal mechanism of the DFIG wind turbine system’s stability.

Suggested Citation

  • Pingping Han & Yu Zhang & Lei Wang & Yan Zhang & Zihao Lin, 2018. "Model Reduction of DFIG Wind Turbine System Based on Inner Coupling Analysis," Energies, MDPI, vol. 11(11), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3234-:d:184517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Ding & Yan Zhang & Pingping Han & Yuying Bao & Haitian Zhang, 2018. "Research on Optimal Wind Power Penetration Ratio and the Effects of a Wind-Thermal-Bundled System under the Constraint of Rotor Angle Transient Stability," Energies, MDPI, vol. 11(3), pages 1-22, March.
    2. Pingping Han & Zihao Lin & Lei Wang & Guijun Fan & Xiaoan Zhang, 2018. "A Survey on Equivalence Modeling for Large-Scale Photovoltaic Power Plants," Energies, MDPI, vol. 11(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Pingping Han & Zihao Lin & Lei Wang & Guijun Fan & Xiaoan Zhang, 2018. "A Survey on Equivalence Modeling for Large-Scale Photovoltaic Power Plants," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    4. Mengjun Liao & Lin Zhu & Yonghao Hu & Yang Liu & Yue Wu & Leke Chen, 2023. "Dynamic Equivalent Modeling of a Large Renewable Power Plant Using a Data-Driven Degree of Similarity Method," Energies, MDPI, vol. 16(19), pages 1-20, October.
    5. Junjun Zhang & Yaojie Sun & Meiyin Liu & Wei Dong & Pingping Han, 2018. "Research on Modeling of Microgrid Based on Data Testing and Parameter Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3234-:d:184517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.