IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1423-d150339.html
   My bibliography  Save this article

An Optimal Scheduling Dispatch of a Microgrid under Risk Assessment

Author

Listed:
  • Whei-Min Lin

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 807, Taiwan)

  • Chung-Yuen Yang

    (Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 807, Taiwan)

  • Chia-Sheng Tu

    (College of Intelligence Robot, Fuzhou Polytechnic, Fuzhou 350108, China)

  • Ming-Tang Tsai

    (Department of Electrical Engineering, Cheng-Shiu University, Kaohsiung 833, Taiwan)

Abstract

This paper presents the scheduling dispatch of a microgrid (MG), while considering renewable energy, battery storage systems, and time-of-use price. For the risk evaluation of an MG, the Value-at-Risk (VAR) is calculated by using the Historical Simulation Method (HSM). By considering the various confidence levels of the VAR, a scheduling dispatch model of the MG is formulated to achieve a reasonable trade-off between the risk and cost. An Improved Bee Swarm Optimization (IBSO) is proposed to solve the scheduling dispatch model of the MG. In the IBSO procedure, the Sin-wave Weight Factor (SWF) and Forward-Backward Control Factor (FBCF) are embedded in the bee swarm of the BSO to improve the movement behaviors of each bee, specifically, its search efficiency and accuracy. The effectiveness of the IBSO is demonstrated via a real MG case and the results are compared with other methods. In either a grid-connected scenario or a stand-alone scenario, an optimal scheduling dispatch of MGs is carried out, herein, at various confidence levels of risk. The simulation results provide more information for handling uncertain environments when analyzing the VAR of MGs.

Suggested Citation

  • Whei-Min Lin & Chung-Yuen Yang & Chia-Sheng Tu & Ming-Tang Tsai, 2018. "An Optimal Scheduling Dispatch of a Microgrid under Risk Assessment," Energies, MDPI, vol. 11(6), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1423-:d:150339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2016. "Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: A comparative study," Energy, Elsevier, vol. 103(C), pages 735-745.
    2. Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
    3. Faber, Isaac & Lane, William & Pak, Wayne & Prakel, Mary & Rocha, Cheyne & Farr, John V., 2014. "Micro-energy markets: The role of a consumer preference pricing strategy on microgrid energy investment," Energy, Elsevier, vol. 74(C), pages 567-575.
    4. Pinto, Mauro S.S. & Miranda, Vladimiro & Saavedra, Osvaldo R., 2016. "Risk and unit commitment decisions in scenarios of wind power uncertainty," Renewable Energy, Elsevier, vol. 97(C), pages 550-558.
    5. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Atencio-Guerra, José L. & Rodrigues, Eduardo M.G. & Bernal-Agustín, José L. & Catalão, João P.S., 2016. "Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids," Applied Energy, Elsevier, vol. 179(C), pages 590-600.
    6. Barelli, L. & Bidini, G. & Bonucci, F., 2016. "A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration," Energy, Elsevier, vol. 113(C), pages 831-844.
    7. Pousinho, H.M.I. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "A risk-averse optimization model for trading wind energy in a market environment under uncertainty," Energy, Elsevier, vol. 36(8), pages 4935-4942.
    8. Ji, Ling & Huang, Guohe & Xie, Yulei & Zhou, Yong & Zhou, Jifang, 2018. "Robust cost-risk tradeoff for day-ahead schedule optimization in residential microgrid system under worst-case conditional value-at-risk consideration," Energy, Elsevier, vol. 153(C), pages 324-337.
    9. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    10. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher, 2012. "Multi-operation management of a typical micro-grids using Particle Swarm Optimization: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1268-1281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biyun Chen & Haoying Chen & Yiyi Zhang & Junhui Zhao & Emad Manla, 2019. "Risk Assessment for the Power Grid Dispatching Process Considering the Impact of Cyber Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    2. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward blockchain-based renewable energy microgrid design considering default risk and demand uncertainty," Renewable Energy, Elsevier, vol. 163(C), pages 870-881.
    3. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    4. Qi Wang & Dasong Sun & Jianxiong Hu & Yi Wu & Ji Zhou & Yi Tang, 2019. "Risk Assessment Method for Integrated Transmission–Distribution System Considering the Reactive Power Regulation Capability of DGs," Energies, MDPI, vol. 12(16), pages 1-14, August.
    5. Xiuyun Wang & Shaoxin Chen & Yibing Zhou & Jian Wang & Yang Cui, 2018. "Optimal Dispatch of Microgrid with Combined Heat and Power System Considering Environmental Cost," Energies, MDPI, vol. 11(10), pages 1-23, September.
    6. Mimica, Marko & Giménez de Urtasun, Laura & Krajačić, Goran, 2022. "A robust risk assessment method for energy planning scenarios on smart islands under the demand uncertainty," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whei-Min Lin & Chia-Sheng Tu & Ming-Tang Tsai, 2015. "Energy Management Strategy for Microgrids by Using Enhanced Bee Colony Optimization," Energies, MDPI, vol. 9(1), pages 1-16, December.
    2. Yong Long & Yu Wang & Chengrong Pan, 2018. "Incentive Mechanism of Micro-grid Project Development," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    3. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    4. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
    5. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    6. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    7. Sarshar, Javad & Moosapour, Seyyed Sajjad & Joorabian, Mahmood, 2017. "Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting," Energy, Elsevier, vol. 139(C), pages 680-693.
    8. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    9. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    10. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    11. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    12. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    13. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    14. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    15. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    16. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    17. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    18. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    19. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    20. Xing Chen & Suhua Lou & Yanjie Liang & Yaowu Wu & Xianglu He, 2021. "Optimal Scheduling of a Regional Power System Aiming at Accommodating Clean Energy," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1423-:d:150339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.