IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2227-d165705.html
   My bibliography  Save this article

Stochastic Hybrid Estimator Based Fault Detection and Isolation for Wind Energy Conversion Systems with Unknown Fault Inputs

Author

Listed:
  • Yun-Tao Shi

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Yuan Zhang

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Xiang Xiang

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Li Wang

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • Zhen-Wu Lei

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

  • De-Hui Sun

    (Key Lab of Field Bus and Automation of Beijing, North China University of Technology, Beijing 100144, China)

Abstract

In recent years, the wind energy conversion system (WECS) has been becoming the vital system to acquire wind energy. However, the high failure rate of WECSs leads to expensive costs for the maintenance of WECSs. Therefore, how to detect and isolate the faults of WECSs with stochastic dynamics is the pressing issue in the literature. This paper proposes a novel comprehensive fault detection and isolation (FDI) method for WECSs. First, a stochastic model predictive control (SMPC) controller is studied to construct the closed-loop system of the WECS. This controller is based on the Markov-jump linear model, which could precisely establish the stochastic dynamics of the WECS. Meanwhile, the SMPC controller has satisfied control performance for the WECS. Second, based on the closed-loop system with SMPC, the stochastic hybrid estimator (SHE) is designed to estimate the continuous and discrete states of the WECS. Compared with the existing estimators for WECSs, the proposed estimator is more suitable for WECSs since it considers both the continuous and discrete states of WECSs. In addition, the proposed estimator is robust to the fault input. Finally, with the proposed estimator, the comprehensive FDI method is given to detect and isolate the actuators’ faults of the WECS. Both the system status and the actuators’ faults can be detected by the FDI method and it can effectively quantify the actuators’ fault by the fault residuals. The simulation results suggest that the SHE could effectively estimate the hybrid states of the WECS, and the proposed FDI method gives satisfied fault detection performance for the actuators of the WECS.

Suggested Citation

  • Yun-Tao Shi & Yuan Zhang & Xiang Xiang & Li Wang & Zhen-Wu Lei & De-Hui Sun, 2018. "Stochastic Hybrid Estimator Based Fault Detection and Isolation for Wind Energy Conversion Systems with Unknown Fault Inputs," Energies, MDPI, vol. 11(9), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2227-:d:165705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun-Tao Shi & Xiang Xiang & Li Wang & Yuan Zhang & De-Hui Sun, 2018. "Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System," Energies, MDPI, vol. 11(1), pages 1-20, January.
    2. Li, Lei & Qi, Wenhai & Chen, Xiaoming & Kao, Yonggui & Gao, Xianwen & Wei, Yunliang, 2018. "Stability analysis and control synthesis for positive semi-Markov jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 363-375.
    3. Nedaei, Mojtaba & Assareh, Ehsanolah & Walsh, Philip R., 2018. "A comprehensive evaluation of the wind resource characteristics to investigate the short term penetration of regional wind power based on different probability statistical methods," Renewable Energy, Elsevier, vol. 128(PA), pages 362-374.
    4. de Bessa, Iury Valente & Palhares, Reinaldo Martinez & D'Angelo, Marcos Flávio Silveira Vasconcelos & Chaves Filho, João Edgar, 2016. "Data-driven fault detection and isolation scheme for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 87(P1), pages 634-645.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Khanbaghi & Aleksandar Zecevic, 2020. "Jump Linear Quadratic Control for Microgrids with Commercial Loads," Energies, MDPI, vol. 13(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    2. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    3. Menon, Muraleekrishnan & Ponta, Fernando L., 2017. "Dynamic aeroelastic behavior of wind turbine rotors in rapid pitch-control actions," Renewable Energy, Elsevier, vol. 107(C), pages 327-339.
    4. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    5. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    6. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    8. Wang, Xingxing & Ma, Yuechao, 2023. "Adaptive non-fragile sliding mode control for switched semi-Markov jump system with time-delay and attack via reduced-order method," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    9. Yu, Peng & Ma, Yuechao, 2020. "Observer-based asynchronous control for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    10. Konstantina Fotiadou & Terpsichori Helen Velivassaki & Artemis Voulkidis & Dimitrios Skias & Corrado De Santis & Theodore Zahariadis, 2020. "Proactive Critical Energy Infrastructure Protection via Deep Feature Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    11. Kim, Ji-Young & Oh, Ki-Yong & Kim, Min-Suek & Kim, Kwang-Yul, 2019. "Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar," Renewable Energy, Elsevier, vol. 144(C), pages 41-55.
    12. Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
    13. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Donggil Kim & Dongik Lee, 2019. "Hierarchical Fault-Tolerant Control using Model Predictive Control for Wind Turbine Pitch Actuator Faults," Energies, MDPI, vol. 12(16), pages 1-13, August.
    15. Bakdi, Azzeddine & Kouadri, Abdelmalek & Mekhilef, Saad, 2019. "A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 546-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2227-:d:165705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.