Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
- Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
- Zhu, Tingting & Wei, Haikun & Zhao, Xin & Zhang, Chi & Zhang, Kanjian, 2017. "Clear-sky model for wavelet forecast of direct normal irradiance," Renewable Energy, Elsevier, vol. 104(C), pages 1-8.
- Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
- Men, Zhongxian & Yee, Eugene & Lien, Fue-Sang & Wen, Deyong & Chen, Yongsheng, 2016. "Short-term wind speed and power forecasting using an ensemble of mixture density neural networks," Renewable Energy, Elsevier, vol. 87(P1), pages 203-211.
- Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
- Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
- Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
- Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Mohammed A. Bou-Rabee & Muhammad Yasin Naz & Imad ED. Albalaa & Shaharin Anwar Sulaiman, 2022. "BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones," Energies, MDPI, vol. 15(6), pages 1-12, March.
- N. Yogambal Jayalakshmi & R. Shankar & Umashankar Subramaniam & I. Baranilingesan & Alagar Karthick & Balasubramaniam Stalin & Robbi Rahim & Aritra Ghosh, 2021. "Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting," Energies, MDPI, vol. 14(9), pages 1-23, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinling Lu & Bo Wang & Hui Ren & Daqian Zhao & Fei Wang & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Two-Tier Reactive Power and Voltage Control Strategy Based on ARMA Renewable Power Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
- Nguyen Gia Minh Thao & Kenko Uchida, 2018. "An Improved Interval Fuzzy Modeling Method: Applications to the Estimation of Photovoltaic/Wind/Battery Power in Renewable Energy Systems," Energies, MDPI, vol. 11(3), pages 1-26, February.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Kihan Kim & Jin Hur, 2019. "Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources," Energies, MDPI, vol. 12(17), pages 1-13, August.
- Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
- Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
- Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
- Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
- Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
- Yue Chen & Zhizhong Guo & Abebe Tilahun Tadie & Hongbo Li & Guizhong Wang & Yingwei Hou, 2019. "Tie-Line Reserve Power Probability Margin for Day-Ahead Dispatching in Power Systems with High Proportion Renewable Power Sources," Energies, MDPI, vol. 12(24), pages 1-23, December.
- Fei Wang & Lidong Zhou & Hui Ren & Xiaoli Liu, 2017. "Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy and Improved Combined Cooling-Heating-Power Strategy Based Two-Time Scale Multi-Objective Optimizat," Energies, MDPI, vol. 10(12), pages 1-23, November.
- Fei Wang & Liming Liu & Yili Yu & Gang Li & Jessica Li & Miadreza Shafie-khah & João P. S. Catalão, 2018. "Impact Analysis of Customized Feedback Interventions on Residential Electricity Load Consumption Behavior for Demand Response," Energies, MDPI, vol. 11(4), pages 1-22, March.
- Fei Wang & Kangping Li & Xinkang Wang & Lihui Jiang & Jianguo Ren & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features," Energies, MDPI, vol. 11(7), pages 1-19, July.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
- Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
- Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
- Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
- Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
More about this item
Keywords
day-ahead forecasting; ensemble model; solar irradiance; data fusion; mutual iterative optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:184-:d:126621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.