IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1518-d113867.html
   My bibliography  Save this article

Two-Tier Reactive Power and Voltage Control Strategy Based on ARMA Renewable Power Forecasting Models

Author

Listed:
  • Jinling Lu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Bo Wang

    (State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute, Beijing 100192, China)

  • Hui Ren

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Daqian Zhao

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

  • Fei Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China
    Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Miadreza Shafie-khah

    (C-MAST, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • João P. S. Catalão

    (C-MAST, University of Beira Interior, 6201-001 Covilhã, Portugal
    INESC TEC and the Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
    INESC-ID, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal)

Abstract

To address the static voltage stability issue and suppress the voltage fluctuation caused by the increasing integration of wind farms and solar photovoltaic (PV) power plants, a two-tier reactive power and voltage control strategy based on ARMA power forecasting models for wind and solar plants is proposed in this paper. Firstly, ARMA models are established to forecast the output of wind farms and solar PV plants. Secondly, the discrete equipment is pre-regulated based on the single-step prediction information from ARMA forecasting models according to the optimization result. Thirdly, a multi-objective optimization model is presented and solved by particle swarm optimization (PSO) according to the measured data and the proposed static voltage stability index. Finally, the IEEE14 bus system including a wind farm and solar PV plant is utilized to test the effectiveness of the proposed strategy. The results show that the proposed strategy can suppress voltage fluctuation and improve the static voltage stability under the condition of high penetration of renewables including wind and solar power.

Suggested Citation

  • Jinling Lu & Bo Wang & Hui Ren & Daqian Zhao & Fei Wang & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Two-Tier Reactive Power and Voltage Control Strategy Based on ARMA Renewable Power Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1518-:d:113867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    2. Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
    3. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    4. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    5. Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Piotr Kacejko & Paweł Pijarski, 2021. "Optimal Voltage Control in MV Network with Distributed Generation," Energies, MDPI, vol. 14(2), pages 1-19, January.
    3. Dash, Deepak Ranjan & Dash, P.K. & Bisoi, Ranjeeta, 2021. "Short term solar power forecasting using hybrid minimum variance expanded RVFLN and Sine-Cosine Levy Flight PSO algorithm," Renewable Energy, Elsevier, vol. 174(C), pages 513-537.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Wang & Zhao Zhen & Chun Liu & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "Time-Section Fusion Pattern Classification Based Day-Ahead Solar Irradiance Ensemble Forecasting Model Using Mutual Iterative Optimization," Energies, MDPI, vol. 11(1), pages 1-17, January.
    2. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    3. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    4. Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
    5. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    6. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    7. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Hu, Jianming & Wang, Jianzhou & Ma, Kailiang, 2015. "A hybrid technique for short-term wind speed prediction," Energy, Elsevier, vol. 81(C), pages 563-574.
    9. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    10. Hu, Weicheng & Yang, Qingshan & Chen, Hua-Peng & Yuan, Ziting & Li, Chen & Shao, Shuai & Zhang, Jian, 2021. "New hybrid approach for short-term wind speed predictions based on preprocessing algorithm and optimization theory," Renewable Energy, Elsevier, vol. 179(C), pages 2174-2186.
    11. Fei Wang & Lidong Zhou & Hui Ren & Xiaoli Liu, 2017. "Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy and Improved Combined Cooling-Heating-Power Strategy Based Two-Time Scale Multi-Objective Optimizat," Energies, MDPI, vol. 10(12), pages 1-23, November.
    12. Fei Wang & Liming Liu & Yili Yu & Gang Li & Jessica Li & Miadreza Shafie-khah & João P. S. Catalão, 2018. "Impact Analysis of Customized Feedback Interventions on Residential Electricity Load Consumption Behavior for Demand Response," Energies, MDPI, vol. 11(4), pages 1-22, March.
    13. Wang, Yun & Wang, Jianzhou & Wei, Xiang, 2015. "A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China," Energy, Elsevier, vol. 91(C), pages 556-572.
    14. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    15. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    16. Fei Wang & Kangping Li & Xinkang Wang & Lihui Jiang & Jianguo Ren & Zengqiang Mi & Miadreza Shafie-khah & João P. S. Catalão, 2018. "A Distributed PV System Capacity Estimation Approach Based on Support Vector Machine with Customer Net Load Curve Features," Energies, MDPI, vol. 11(7), pages 1-19, July.
    17. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    18. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    19. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    20. Wang, Xin & Sun, Mei, 2021. "A novel prediction model of multi-layer symbolic pattern network: Based on causation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1518-:d:113867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.