IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p137-d125670.html
   My bibliography  Save this article

Variance Characteristics of Tropical Radiosonde Winds Using a Vector-Tensor Method

Author

Listed:
  • Jing-Jin Tieo

    (Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
    Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637141, Singapore)

  • Tieh-Yong Koh

    (UC, Singapore University of Social Sciences, Singapore 599491, Singapore)

  • Martin Skote

    (School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Narasimalu Srikanth

    (Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637141, Singapore)

Abstract

In this paper, an exploratory study on the variance characteristics of upper-air winds in a near-equator monsoon region is presented. The data were obtained from historical radiosonde observations from up to 250 stations within the region of interest for the period between 1954 and 2013. An alternative method based on vector statistics was employed in this study which characterises the mean by a vector and the variance by a tensor. Unlike the conventional approach of using scalar wind speeds, this vector-tensor approach allows the directional properties of the variance to be studied. A suite of statistics to describe the geometric properties of the variance tensor was also developed. These characterise the size of the variance, its degree of anisotropy, and the alignment of the preferred direction (if anisotropy is present) with the direction of the mean wind vector. Through analysis of these statistics, several salient trends were observed for the middle troposphere. It was found that the variance size and anisotropy exhibit significant variation with height whereas the alignment with the mean vector varies with the mean wind magnitude instead. It was also found that the scalar variance increases with mean wind speed.

Suggested Citation

  • Jing-Jin Tieo & Tieh-Yong Koh & Martin Skote & Narasimalu Srikanth, 2018. "Variance Characteristics of Tropical Radiosonde Winds Using a Vector-Tensor Method," Energies, MDPI, vol. 11(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:137-:d:125670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karthikeya, B.R. & Negi, Prabal S. & Srikanth, N., 2016. "Wind resource assessment for urban renewable energy application in Singapore," Renewable Energy, Elsevier, vol. 87(P1), pages 403-414.
    2. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    3. Sopian, K. & Othman, M.Y.Hj. & Wirsat, A., 1995. "The wind energy potential of Malaysia," Renewable Energy, Elsevier, vol. 6(8), pages 1005-1016.
    4. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    5. Fang, Hsin-Fa, 2014. "Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago," Renewable Energy, Elsevier, vol. 67(C), pages 237-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Basir Khan, M. Reyasudin & Jidin, Razali & Pasupuleti, Jagadeesh & Shaaya, Sharifah Azwa, 2015. "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea," Energy, Elsevier, vol. 82(C), pages 80-97.
    3. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    4. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    5. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Shoaib, Muhammad & Siddiqui, Imran & Amir, Yousaf Muhammad & Rehman, Saif Ur, 2017. "Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1343-1351.
    7. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Kamau, J.N. & Kinyua, R. & Gathua, J.K., 2010. "6 years of wind data for Marsabit, Kenya average over 14m/s at 100m hub height; An analysis of the wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1298-1302.
    9. Johannes Alexander Müller & Mostafa Yasser Mostafa Khalil Elhashash & Volker Gollnick, 2022. "Electrical Launch Catapult and Landing Decelerator for Fixed-Wing Airborne Wind Energy Systems," Energies, MDPI, vol. 15(7), pages 1-19, March.
    10. Ram Avtar & Netrananda Sahu & Ashwani Kumar Aggarwal & Shamik Chakraborty & Ali Kharrazi & Ali P. Yunus & Jie Dou & Tonni Agustiono Kurniawan, 2019. "Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review," Resources, MDPI, vol. 8(3), pages 1-23, August.
    11. Alsharif, Mohammed H. & Nordin, Rosdiadee & Ismail, Mahamod, 2016. "Green wireless network optimisation strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia," Renewable Energy, Elsevier, vol. 85(C), pages 157-170.
    12. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    13. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    14. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    15. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    16. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    17. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    18. Shih-Chieh Liao & Shih-Chieh Chang & Tsung-Chi Cheng, 2021. "Managing the Volatility Risk of Renewable Energy: Index Insurance for Offshore Wind Farms in Taiwan," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    19. Rakib, M.I. & Evans, S.P. & Clausen, P.D., 2020. "Measured gust events in the urban environment, a comparison with the IEC standard," Renewable Energy, Elsevier, vol. 146(C), pages 1134-1142.
    20. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:137-:d:125670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.