IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p112-d125321.html
   My bibliography  Save this article

Impacts of Water Flow Rate on Freezing Prevention of Air-Cooled Heat Exchangers in Power Plants

Author

Listed:
  • Yonghong Guo

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipments of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Huimin Wei

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipments of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Xiaoru Yang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipments of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Weijia Wang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipments of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Xiaoze Du

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipments of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Lijun Yang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipments of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Under cold ambient conditions, the freezing risk of air-cooled heat exchangers, especially the frontal finned tube bundles, has been a critical concern in power plants. Based on the freezing conditions of the cooling deltas under windy conditions, the flow and heat transfer characteristics of natural draft dry cooling system (NDDCS) with 30%, 40% and 50% increased water flow rates are investigated in this work, and the outlet circulating water temperatures of the easily freezing cooling deltas and sectors are obtained. The results show that the deltas in the middle front and rear sectors become free from freezing at all wind speeds when the circulating water flow rate is increased. For the frontal sector with increased water flow rate, the outlet water temperatures of deltas increase conspicuously at 4 m/s and 8 m/s, while as the wind speed rises to 16 m/s, these deltas still face serious freezing risks due to the huge heat rejection to ambient air. Therefore, freezing prevention of air-cooled NDDCS heat exchangers can be achieved by increasing the water flow rates at small wind speeds, while as the wind speed becomes high, the water flow redistribution is suggested for the frontal and middle sectors due to their big performance difference.

Suggested Citation

  • Yonghong Guo & Huimin Wei & Xiaoru Yang & Weijia Wang & Xiaoze Du & Lijun Yang, 2018. "Impacts of Water Flow Rate on Freezing Prevention of Air-Cooled Heat Exchangers in Power Plants," Energies, MDPI, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:112-:d:125321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "A novel layout of air-cooled condensers to improve thermo-flow performances," Applied Energy, Elsevier, vol. 165(C), pages 244-259.
    2. Zhao, Yuanbin & Sun, Fengzhong & Li, Yan & Long, Guoqing & Yang, Zhi, 2015. "Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load," Applied Energy, Elsevier, vol. 149(C), pages 225-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    2. Weijia Wang & Lei Chen & Xianwei Huang & Lijun Yang & Xiaoze Du, 2017. "Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    4. Yanqiang Kong & Weijia Wang & Zhitao Zuo & Lijun Yang & Xiaoze Du & Chao Xu & Yongping Yang, 2019. "Influencing Mechanisms of a Crosswind on the Thermo-Hydraulic Characteristics of a Large-Scale Air-Cooled Heat Exchanger," Energies, MDPI, vol. 12(6), pages 1-29, March.
    5. Huiqian Guo & Yue Yang & Tongrui Cheng & Hanyu Zhou & Weijia Wang & Xiaoze Du, 2021. "Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System," Energies, MDPI, vol. 14(7), pages 1-17, April.
    6. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    7. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    8. Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
    9. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    10. Lorenzo Tieghi & Giovanni Delibra & Johan Van der Spuy & Alessandro Corsini, 2024. "Design of Sinusoidal Leading Edge for Low-Speed Axial Fans Operating under Inflow Distortion," Energies, MDPI, vol. 17(5), pages 1-17, February.
    11. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    12. Wenhui Huang & Lei Chen & Lijun Yang & Xiaoze Du, 2021. "Energy-Saving Strategies of Axial Flow Fans for Direct Dry Cooling System," Energies, MDPI, vol. 14(11), pages 1-25, May.
    13. Wei, Huimin & Huang, Xianwei & Chen, Lin & Yang, Lijun & Du, Xiaoze, 2020. "Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants," Applied Energy, Elsevier, vol. 262(C).
    14. Zhonghua Wang & Zenggang Yue & Wei Wang & Chenghui Ma & Xiaoguang Li & Changmin Guo & Yuanbin Zhao, 2024. "Study on the Influence of Circulating Water Bypass on the Thermal and Anti-Freezing Characteristics of High-Level Wet Cooling Tower," Energies, MDPI, vol. 17(9), pages 1-12, April.
    15. Zhao Li & Huimin Wei & Tao Wu & Xiaoze Du, 2021. "Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm," Energies, MDPI, vol. 14(4), pages 1-17, February.
    16. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    17. Xianwei Huang & Lin Chen & Lijun Yang & Xiaoze Du & Yongping Yang, 2019. "Cooling Performance Enhancement of Air-Cooled Condensers by Guiding Air Flow," Energies, MDPI, vol. 12(18), pages 1-28, September.
    18. Haotian Dong & Dawei Wan & Minghua Liu & Tiefeng Chen & Shasha Gao & Yuanbin Zhao, 2020. "Evaluation of the Hot Air Recirculation Effect and Relevant Empirical Formulae Applicability for Mechanical Draft Wet Cooling Towers," Energies, MDPI, vol. 13(13), pages 1-20, June.
    19. Weiming Ni & Zhihua Ge & Lijun Yang & Xiaoze Du, 2019. "Piping-Main Scheme for Condensers against the Adverse Impact of Environmental Conditions on Air-Cooled Thermal Power Units," Energies, MDPI, vol. 13(1), pages 1-17, December.
    20. O’Donovan, Alan & Grimes, Ronan & Sikora, Paul, 2019. "Enhanced performance of air-cooled thermal power plants using low temperature thermal storage," Applied Energy, Elsevier, vol. 250(C), pages 1673-1685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:112-:d:125321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.