IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2317-d240566.html
   My bibliography  Save this article

Data-Driven Stochastic Scheduling for Energy Integrated Systems

Author

Listed:
  • Heng Yang

    (State Key Laboratory of Simulation and Regulation of Water Cycles in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    These authors contributed equally to this work.)

  • Ziliang Jin

    (Department of Production Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
    These authors contributed equally to this work.)

  • Jianhua Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycles in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Yong Zhao

    (State Key Laboratory of Simulation and Regulation of Water Cycles in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Hejia Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycles in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Weihua Xiao

    (State Key Laboratory of Simulation and Regulation of Water Cycles in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

As the penetration of intermittent renewable energy increases and unexpected market behaviors continue to occur, new challenges arise for system operators to ensure cost effectiveness while maintaining system reliability under uncertainties. To systematically address these uncertainties and challenges, innovative advanced methods and approaches are needed. Motivated by these, in this paper, we consider an energy integrated system with renewable energy and pumped-storage units involved. In addition, we propose a data-driven risk-averse two-stage stochastic model that considers the features of forbidden zones and dynamic ramping rate limits. This model minimizes the total cost against the worst-case distribution in the confidence set built for an unknown distribution and constructed based on data. Our numerical experiments show how pumped-storage units contribute to the system, how inclusions of the aforementioned two features improve the reliability of the system, and how our proposed data-driven model converges to a risk-neutral model with historical data.

Suggested Citation

  • Heng Yang & Ziliang Jin & Jianhua Wang & Yong Zhao & Hejia Wang & Weihua Xiao, 2019. "Data-Driven Stochastic Scheduling for Energy Integrated Systems," Energies, MDPI, vol. 12(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2317-:d:240566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Fan, Lei & Pan, Kai & Guan, Yongpei, 2019. "A strengthened mixed-integer linear programming formulation for combined-cycle units," European Journal of Operational Research, Elsevier, vol. 275(3), pages 865-881.
    4. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    5. Gejirifu De & Zhongfu Tan & Menglu Li & Liling Huang & Xueying Song, 2018. "Two-Stage Stochastic Optimization for the Strategic Bidding of a Generation Company Considering Wind Power Uncertainty," Energies, MDPI, vol. 11(12), pages 1-21, December.
    6. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    7. Luca Petricca & Per Ohlckers & Xuyuan Chen, 2013. "The Future of Energy Storage Systems," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    8. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    9. Yongpei Guan & Kai Pan & Kezhuo Zhou, 2018. "Polynomial time algorithms and extended formulations for unit commitment problems," IISE Transactions, Taylor & Francis Journals, vol. 50(8), pages 735-751, August.
    10. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    2. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    3. Barbaros, Efe & Aydin, Ismail & Celebioglu, Kutay, 2021. "Feasibility of pumped storage hydropower with existing pricing policy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    5. Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of ‘Semi-Regulated’ Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
    6. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    7. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    8. Haoxiang Yang & David P. Morton & Chaithanya Bandi & Krishnamurthy Dvijotham, 2021. "Robust Optimization for Electricity Generation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 336-351, January.
    9. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Steffen, Bjarne & Weber, Christoph, 2013. "Efficient storage capacity in power systems with thermal and renewable generation," Energy Economics, Elsevier, vol. 36(C), pages 556-567.
    11. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    12. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.
    13. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    14. Kramer, Anja & Krebs, Vanessa & Schmidt, Martin, 2021. "Strictly and Γ-robust counterparts of electricity market models: Perfect competition and Nash–Cournot equilibria," Operations Research Perspectives, Elsevier, vol. 8(C).
    15. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    16. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    17. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    18. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    19. François Clautiaux & Boris Detienne & Henri Lefebvre, 2023. "A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty," Journal of Scheduling, Springer, vol. 26(2), pages 169-191, April.
    20. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2317-:d:240566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.