IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3488-d190495.html
   My bibliography  Save this article

Free Angular-Positioning Wireless Power Transfer Using a Spherical Joint

Author

Listed:
  • Mohamad Abou Houran

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xu Yang

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Wenjie Chen

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Many studies have investigated resonator structures and winding methods. The aims of this paper are as follows. First, the paper proposes an optimized winding model for a bio-inspired joint for a wireless power transfer (WPT) system. The joint consists of a small spherical structure, which rotates inside a hemispherical structure. The transmitter coil ( Tx ) is wound on the hemisphere structure, and the receiver coil ( Rx ) is wound on the small sphere. The power is transferred while rotating Rx over a wide range of angular misalignment. In addition, the algorithm design of the proposed winding method is given to get an optimized model. Moreover, the circuit analysis of the WPT system is discussed. Second, the magnetic field density is investigated considering a safety issue, which is linked to human exposure to electromagnetic fields (EMFs). Moreover, EMF mitigation methods are proposed and discussed in detail. Finally, the simulation results are validated by experiments, which have confirmed that the proposed winding method allows the system to rotate up to 85 degrees and achieve an efficiency above 86%. The proposed winding method for the WPT system can be a good technique for some robotic applications or a future replacement of the human joint.

Suggested Citation

  • Mohamad Abou Houran & Xu Yang & Wenjie Chen, 2018. "Free Angular-Positioning Wireless Power Transfer Using a Spherical Joint," Energies, MDPI, vol. 11(12), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3488-:d:190495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhaohong Ye & Yue Sun & Xiufang Liu & Peiyue Wang & Chunsen Tang & Hailin Tian, 2018. "Power Transfer Efficiency Analysis for Omnidirectional Wireless Power Transfer System Using Three-Phase-Shifted Drive," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Seyit Ahmet Sis & Emre Orta, 2018. "A Cross-Shape Coil Structure for Use in Wireless Power Applications," Energies, MDPI, vol. 11(5), pages 1-14, April.
    3. Cheng Jiang & Yue Sun & Zhihui Wang & Chunsen Tang, 2018. "Multi-Load Mode Analysis for Electric Vehicle Wireless Supply System," Energies, MDPI, vol. 11(8), pages 1-11, July.
    4. Yang Yang & Mohamed El Baghdadi & Yuanfeng Lan & Yassine Benomar & Joeri Van Mierlo & Omar Hegazy, 2018. "Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohdan Pakhaliuk & Viktor Shevchenko & Jan Mućko & Oleksandr Husev & Mykola Lukianov & Piotr Kołodziejek & Natalia Strzelecka & Ryszard Strzelecki, 2021. "Optimal Rotating Receiver Angles Estimation for Multicoil Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(19), pages 1-15, September.
    2. Jacek Maciej Stankiewicz, 2023. "Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System," Energies, MDPI, vol. 16(4), pages 1-22, February.
    3. Jacek Maciej Stankiewicz & Adam Steckiewicz & Agnieszka Choroszucho, 2023. "Analysis of Simultaneous WPT in Ultra-Low-Power Systems with Multiple Resonating Planar Coils," Energies, MDPI, vol. 16(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    2. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    3. Osamu Shimizu & Sakahisa Nagai & Toshiyuki Fujita & Hiroshi Fujimoto, 2020. "Potential for CO 2 Reduction by Dynamic Wireless Power Transfer for Passenger Vehicles in Japan," Energies, MDPI, vol. 13(13), pages 1-16, June.
    4. Jacek Maciej Stankiewicz, 2023. "Evaluation of the Influence of the Load Resistance on Power and Efficiency in the Square and Circular Periodic WPT Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    5. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    6. David Demetz & Alexander Sutor, 2022. "Inductively Powered Sensornode Transmitter Based on the Interconnection of a Colpitts and a Parallel Resonant LC Oscillator," Energies, MDPI, vol. 15(17), pages 1-16, August.
    7. Zhengchao Yan & Yiming Zhang & Baowei Song & Kehan Zhang & Tianze Kan & Chris Mi, 2019. "An LCC-P Compensated Wireless Power Transfer System with a Constant Current Output and Reduced Receiver Size," Energies, MDPI, vol. 12(1), pages 1-14, January.
    8. Jacek Maciej Stankiewicz, 2023. "Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System," Energies, MDPI, vol. 16(4), pages 1-22, February.
    9. Libin Yang & Ming Zong & Chunlai Li, 2021. "Voltage-Gain Design and Efficiency Optimization of Series/Series-Parallel Inductive Power Transfer System Considering Misalignment Issue," Energies, MDPI, vol. 14(11), pages 1-11, May.
    10. Lin Du & Yubo Wang & Wujing Wang & Xiangxiang Chen, 2018. "Studies on a Thermal Fault Simulation Device and the Pyrolysis Process of Insulating Oil," Energies, MDPI, vol. 11(12), pages 1-16, December.
    11. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    12. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    13. Demetrio Iero & Riccardo Carotenuto & Massimo Merenda & Fortunato Pezzimenti & Francesco Giuseppe Della Corte, 2022. "Performance Evaluation of Silicon and GaN Switches for a Small Wireless Power Transfer System," Energies, MDPI, vol. 15(9), pages 1-18, April.
    14. Bo Cheng & Jianghua Lu & Yiming Zhang & Guang Pan & Rakan Chabaan & Chunting Chris Mi, 2020. "A Metal Object Detection System with Multilayer Detection Coil Layouts for Electric Vehicle Wireless Charging," Energies, MDPI, vol. 13(11), pages 1-16, June.
    15. Dong-Hun Woo & Hwa-Rang Cha & Rae-Young Kim, 2020. "Resonant Network Design Method to Reduce Influence of Mutual Inductance between Receivers in Multi-Output Omnidirectional Wireless Power Transfer Systems," Energies, MDPI, vol. 13(21), pages 1-15, October.
    16. HwaPyeong Park & DoKyoung Kim & SeungHo Baek & JeeHoon Jung, 2019. "Extension of Zero Voltage Switching Capability for CLLC Resonant Converter," Energies, MDPI, vol. 12(5), pages 1-14, March.
    17. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    18. Xian Zhang & Xuejing Ni & Bin Wei & Songcen Wang & Qingxin Yang, 2018. "Characteristic Analysis of Electromagnetic Force in a High-Power Wireless Power Transfer System," Energies, MDPI, vol. 11(11), pages 1-13, November.
    19. Junqing Lan & Akimasa Hirata, 2020. "Effect of Loudspeakers on the In Situ Electric Field in a Driver Body Model Exposed to an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3488-:d:190495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.