IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipbs0306261922015768.html
   My bibliography  Save this article

Virtual-real interaction control of hybrid load system for low-carbon energy services

Author

Listed:
  • Wu, Xin
  • Yao, Lijuan
  • Pi, Tanxin
  • Liu, Yuhang
  • Li, Xiang
  • Gong, Gangjun

Abstract

Effectively aggregating demand-side loads is an essential way to promote the adjustment of energy structure. The electric water heaters (EWHs) and air conditioners (ACs) with great regulation potential make up a large part of demand-side loads. A system consisting of many EWHs and ACs presents hybrid characteristics of random and disorder due to the heterogeneity of physical parameters, which increases the difficulty of control. In this paper, a control system in layers based on virtual-real interaction is proposed to solve the problem. The control system consists of four layers: embedded control, aggregation control, cluster control and object control, which form a closed-loop. Starting from the embedded control layer, the bottom-up aggregation model is constructed to form a stable and controllable response system with considerable power transfer capacity. And from the object control layer, the top-down control model is built to stably adjust heterogeneous loads without influence on the comfort of users in a short-time scale. During the aggregation and control, aggregation characteristics of EWHs and ACs are modeled as the stochastic battery to describe the aggregation flexibility, and the complementarity of aggregation responses between EWHs and ACs is relied on to coordinate the load clusters. Moreover, the switching control model is constructed to manage the EWH cluster and develop the aggregation characteristic of EWHs. With the extensibility, the control algorithm is not limited to the application of EWHs and ACs. Finally, a tracking simulation for smoothing the clean energy output is provided to verify the effectiveness of the virtual-real interaction algorithm in layers.

Suggested Citation

  • Wu, Xin & Yao, Lijuan & Pi, Tanxin & Liu, Yuhang & Li, Xiang & Gong, Gangjun, 2023. "Virtual-real interaction control of hybrid load system for low-carbon energy services," Applied Energy, Elsevier, vol. 330(PB).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922015768
    DOI: 10.1016/j.apenergy.2022.120319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    2. Wu, Xin & Liang, Kaixin & Jiao, Dian, 2019. "Air conditioner group collaborative method under multi-layer information interaction structure," Energy, Elsevier, vol. 186(C).
    3. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    4. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    5. Lynch, Muireann Á. & Nolan, Sheila & Devine, Mel T. & O’Malley, Mark, 2019. "The impacts of demand response participation in capacity markets," Applied Energy, Elsevier, vol. 250(C), pages 444-451.
    6. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    7. Mitrašinović, Aleksandar M., 2021. "Photovoltaics advancements for transition from renewable to clean energy," Energy, Elsevier, vol. 237(C).
    8. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    9. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Zhang, Zhen, 2018. "Coordination optimization of multiple thermostatically controlled load groups in distribution network with renewable energy," Applied Energy, Elsevier, vol. 231(C), pages 456-467.
    10. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    3. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    4. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    5. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    6. Luchnikov, I. & Métivier, D. & Ouerdane, H. & Chertkov, M., 2021. "Super-relaxation of space–time-quantized ensemble of energy loads to curtail their synchronization after demand response perturbation," Applied Energy, Elsevier, vol. 285(C).
    7. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    8. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    9. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.
    10. Guorong Chen & Shiyi Fang & Qibo Chen & Yun Zhang, 2023. "Risk Spillovers and Network Connectedness between Clean Energy Stocks, Green Bonds, and Other Financial Assets: Evidence from China," Energies, MDPI, vol. 16(20), pages 1-21, October.
    11. Raman, Gururaghav & Zhao, Bo & Peng, Jimmy Chih-Hsien & Weidlich, Matthias, 2022. "Adaptive incentive-based demand response with distributed non-compliance assessment," Applied Energy, Elsevier, vol. 326(C).
    12. Shan, Kui & Wang, Shengwei, 2017. "Energy efficient design and control of cleanroom environment control systems in subtropical regions – A comparative analysis and on-site validation," Applied Energy, Elsevier, vol. 204(C), pages 582-595.
    13. Qi Huang & Aihua Jiang & Yu Zeng & Jianan Xu, 2022. "Community Flexible Load Dispatching Model Based on Herd Mentality," Energies, MDPI, vol. 15(13), pages 1-18, June.
    14. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    15. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    16. Devine, Mel T. & Siddiqui, Sauleh, 2023. "Strategic investment decisions in an oligopoly with a competitive fringe: An equilibrium problem with equilibrium constraints approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1473-1494.
    17. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    18. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    19. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    20. Yongzhu Hua & Qiangqiang Xie & Liang Zheng & Jiadong Cui & Lihuan Shao & Weiwei Hu, 2022. "Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners," Energies, MDPI, vol. 15(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922015768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.